Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genome-wide map of adeno-associated virus–mediated human gene targeting

Abstract

To determine which genomic features promote homologous recombination, we created a genome-wide map of gene targeting sites. We used an adeno-associated virus vector to target identical loci introduced as transcriptionally active retroviral vectors. A comparison of ~2,000 targeted and untargeted sites showed that targeting occurred throughout the human genome and was not influenced by the presence of nearby CpG islands, sequence repeats or DNase I–hypersensitive sites. Targeted sites were preferentially located within transcription units, especially when the target loci were transcribed in the opposite orientation to their surrounding chromosomal genes. We determined the impact of DNA replication by mapping replication forks, which revealed a preference for recombination at target loci transcribed toward an incoming fork. Our results constitute the first genome-wide screen of gene targeting in mammalian cells and demonstrate a strong recombinogenic effect of colliding polymerases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide gene targeting.
Figure 2: Transcriptional effects on targeting.
Figure 3: Genome-wide replication-fork mapping.
Figure 4: DNA-replication effects on targeting.
Figure 5: Targeting frequencies in subclones with specific, mapped integration sites.
Figure 6: Stalled replication forks may promote vector pairing at target loci.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Kong, A. et al. A high-resolution recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).

    Article  CAS  Google Scholar 

  2. Wilson, J.H., Leung, W.Y., Bosco, G., Dieu, D. & Haber, J.E. The frequency of gene targeting in yeast depends on the number of target copies. Proc. Natl. Acad. Sci. USA 91, 177–181 (1994).

    Article  CAS  Google Scholar 

  3. Gray, M. & Honigberg, S.M. Effect of chromosomal locus, GC content and length of homology on PCR-mediated targeted gene replacement in Saccharomyces. Nucleic Acids Res. 29, 5156–5162 (2001).

    Article  CAS  Google Scholar 

  4. Yáñez, R.J. & Porter, A.C. A chromosomal position effect on gene targeting in human cells. Nucleic Acids Res. 30, 4892–4901 (2002).

    Article  Google Scholar 

  5. Raynard, S.J., Read, L.R. & Baker, M.D. Evidence for the murine IgH mu locus acting as a hot spot for intrachromosomal homologous recombination. J. Immunol. 168, 2332–2339 (2002).

    Article  CAS  Google Scholar 

  6. Buzina, A. & Shulman, M.J. An element in the endogenous IgH locus stimulates gene targeting in hybridoma cells. Nucleic Acids Res. 24, 1525–1530 (1996).

    Article  CAS  Google Scholar 

  7. Thyagarajan, B., Johnson, B.L. & Campbell, C. The effect of target site transcription on gene targeting in human cells in vitro. Nucleic Acids Res. 23, 2784–2790 (1995).

    Article  CAS  Google Scholar 

  8. Domínguez-Bendala, J. & McWhir, J. Enhanced gene targeting frequency in ES cells with low genomic methylation levels. Transgenic Res. 13, 69–74 (2004).

    Article  Google Scholar 

  9. Cornea, A.M. & Russell, D.W. Chromosomal position effects on AAV-mediated gene targeting. Nucleic Acids Res. 38, 3582–3594 (2010).

    Article  CAS  Google Scholar 

  10. Hirata, R., Chamberlain, J., Dong, R. & Russell, D.W. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat. Biotechnol. 20, 735–738 (2002).

    Article  CAS  Google Scholar 

  11. Zwaka, T.P. & Thomson, J.A. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21, 319–321 (2003).

    Article  CAS  Google Scholar 

  12. Brown, J.P., Wei, W. & Sedivy, J.M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831–834 (1997).

    Article  CAS  Google Scholar 

  13. Miller, D.G., Petek, L.M. & Russell, D.W. Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks. Mol. Cell. Biol. 23, 3550–3557 (2003).

    Article  CAS  Google Scholar 

  14. Porteus, M.H., Cathomen, T., Weitzman, M.D. & Baltimore, D. Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol. Cell. Biol. 23, 3558–3565 (2003).

    Article  CAS  Google Scholar 

  15. Vasileva, A., Linden, R.M. & Jessberger, R. Homologous recombination is required for AAV-mediated gene targeting. Nucleic Acids Res. 34, 3345–3360 (2006).

    Article  CAS  Google Scholar 

  16. Russell, D.W. & Hirata, R.K. Human gene targeting favors insertions over deletions. Hum. Gene Ther. 19, 907–914 (2008).

    Article  CAS  Google Scholar 

  17. Wu, X., Li, Y., Crise, B. & Burgess, S.M. Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751 (2003).

    Article  CAS  Google Scholar 

  18. Mitchell, R.S. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, E234 (2004).

    Article  Google Scholar 

  19. Lewinski, M.K. et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2, e60 (2006).

    Article  Google Scholar 

  20. Costes, A. & Lambert, A.E. Homologous recombination as a replication fork escort: fork protection and recovery. Biomolecules 3, 39–71 (2012).

    Article  Google Scholar 

  21. Aze, A., Zhou, J.C., Costa, A. & Costanzo, V. DNA replication and homologous recombination factors: acting together to maintain genome stability. Chromosoma 122, 401–413 (2013).

    Article  CAS  Google Scholar 

  22. Hansen, R.S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. USA 107, 139–144 (2010).

    Article  CAS  Google Scholar 

  23. Goldman, M.A., Holmquist, G.P., Gray, M.C., Caston, L.A. & Nag, A. Replication timing of genes and middle repetitive sequences. Science 224, 686–692 (1984).

    Article  CAS  Google Scholar 

  24. Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011).

    Article  CAS  Google Scholar 

  25. Bullock, P., Miller, J. & Botchan, M. Effects of poly[d(pGpT).d(pApC)] and poly[d(pCpG).d(pCpG)] repeats on homologous recombination in somatic cells. Mol. Cell. Biol. 6, 3948–3953 (1986).

    Article  CAS  Google Scholar 

  26. Benet, A., Molla, G. & Azorin, F. d(GA x TC)n microsatellite DNA sequences enhance homologous DNA recombination in SV40 minichromosomes. Nucleic Acids Res. 28, 4617–4622 (2000).

    Article  CAS  Google Scholar 

  27. Wahls, W.P., Wallace, L.J. & Moore, P.D. The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture. Mol. Cell. Biol. 10, 785–793 (1990).

    Article  CAS  Google Scholar 

  28. Wahls, W.P., Wallace, L.J. & Moore, P.D. Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60, 95–103 (1990).

    Article  CAS  Google Scholar 

  29. Lin, Y. & Wilson, J.H. Transcription-induced DNA toxicity at trinucleotide repeats: double bubble is trouble. Cell Cycle 10, 611–618 (2011).

    Article  CAS  Google Scholar 

  30. Lin, Y., Leng, M., Wan, M. & Wilson, J.H. Convergent transcription through a long CAG tract destabilizes repeats and induces apoptosis. Mol. Cell. Biol. 30, 4435–4451 (2010).

    Article  CAS  Google Scholar 

  31. Nakamori, M., Pearson, C.E. & Thornton, C.A. Bidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats. Hum. Mol. Genet. 20, 580–588 (2011).

    Article  CAS  Google Scholar 

  32. Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573–578 (2004).

    Article  CAS  Google Scholar 

  33. Sjögren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).

    Article  Google Scholar 

  34. Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nat. Biotechnol. 21, 379–386 (2003).

    Article  CAS  Google Scholar 

  35. Tuduri, S., Tourriere, H. & Pasero, P. Defining replication origin efficiency using DNA fiber assays. Chromosome Res. 18, 91–102 (2010).

    Article  CAS  Google Scholar 

  36. Prado, F. & Aguilera, A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24, 1267–1276 (2005).

    Article  CAS  Google Scholar 

  37. Takeuchi, Y., Horiuchi, T. & Kobayashi, T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 17, 1497–1506 (2003).

    Article  CAS  Google Scholar 

  38. de la Loza, M.C., Wellinger, R.E. & Aguilera, A. Stimulation of direct-repeat recombination by RNA polymerase III transcription. DNA Repair (Amst.) 8, 620–626 (2009).

    Article  Google Scholar 

  39. Helmrich, A., Ballarino, M., Nudler, E. & Tora, L. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20, 412–418 (2013).

    Article  CAS  Google Scholar 

  40. Kim, N. & Jinks-Robertson, S. Transcription as a source of genome instability. Nat. Rev. Genet. 13, 204–214 (2012).

    Article  CAS  Google Scholar 

  41. Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nat. Rev. Mol. Cell Biol. 11, 208–219 (2010).

    Article  CAS  Google Scholar 

  42. Postow, L. et al. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 276, 2790–2796 (2001).

    Article  CAS  Google Scholar 

  43. Sogo, J.M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).

    Article  CAS  Google Scholar 

  44. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  Google Scholar 

  45. Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  46. Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153–159 (2005).

    Article  CAS  Google Scholar 

  47. Berns, K.I. & Adler, S. Separation of two types of adeno-associated virus particles containing complementary polynucleotide chains. J. Virol. 9, 394–396 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bourguignon, G.J., Tattersall, P.J. & Ward, D.C. DNA of minute virus of mice: self-priming, nonpermuted, single-stranded genome with a 5′-terminal hairpin duplex. J. Virol. 20, 290–306 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Crawford, L.V., Follett, E.A., Burdon, M.G. & McGeoch, D.J. The DNA of a minute virus of mice. J. Gen. Virol. 4, 37–46 (1969).

    Article  CAS  Google Scholar 

  50. Hendrie, P.C., Hirata, R.K. & Russell, D.W. Chromosomal integration and homologous gene targeting by replication-incompetent vectors based on the autonomous parvovirus minute virus of mice. J. Virol. 77, 13136–13145 (2003).

    Article  CAS  Google Scholar 

  51. Russell, D.W. & Hirata, R.K. Human gene targeting by viral vectors. Nat. Genet. 18, 325–330 (1998).

    Article  CAS  Google Scholar 

  52. Hirata, R.K. & Russell, D.W. Design and packaging of adeno-associated virus gene targeting vectors. J. Virol. 74, 4612–4620 (2000).

    Article  CAS  Google Scholar 

  53. Liu, X. et al. Targeted correction of single-base-pair mutations with adeno-associated virus vectors under nonselective conditions. J. Virol. 78, 4165–4175 (2004).

    Article  CAS  Google Scholar 

  54. Wang, P.R. et al. Induction of hepatocellular carcinoma by in vivo gene targeting. Proc. Natl. Acad. Sci. USA 109, 11264–11269 (2012).

    Article  CAS  Google Scholar 

  55. Rogers, C.S. et al. Production of CFTR-null and CFTR-ΔF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J. Clin. Invest. 118, 1571–1577 (2008).

    Article  CAS  Google Scholar 

  56. Sun, X. et al. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J. Clin. Invest. 118, 1578–1583 (2008).

    Article  CAS  Google Scholar 

  57. Trobridge, G., Hirata, R.K. & Russell, D.W. Gene targeting by adeno-associated virus vectors is cell-cycle dependent. Hum. Gene. Ther. 16, 522–526 (2005).

    Article  CAS  Google Scholar 

  58. Rasheed, S., Nelson Rees, W.A., Toth, E.M., Arnstein, P. & Gardner, M.B. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33, 1027–1033 (1974).

    Article  CAS  Google Scholar 

  59. Graham, F.L., Smiley, J., Russell, W.C. & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74 (1977).

    Article  CAS  Google Scholar 

  60. DuBridge, R.B. et al. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7, 379–387 (1987).

    Article  CAS  Google Scholar 

  61. Inoue, N., Hirata, R.K. & Russell, D.W. High-fidelity correction of mutations at multiple chromosomal positions by adeno-associated virus vectors. J. Virol. 73, 7376–7380 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chang, A.C. & Cohen, S.N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141–1156 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Burns, J.C., Friedmann, T., Driever, W., Burrascano, M. & Yee, J.K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037 (1993).

    Article  CAS  Google Scholar 

  64. Khan, I.F., Hirata, R.K. & Russell, D.W. AAV-mediated gene targeting methods for human cells. Nat. Protoc. 6, 482–501 (2011).

    Article  CAS  Google Scholar 

  65. Rutledge, E.A. & Russell, D.W. Adeno-associated virus vector integration junctions. J. Virol. 71, 8429–8436 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Josephson, N.C. et al. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc. Natl. Acad. Sci. USA 99, 8295–8300 (2002).

    Article  CAS  Google Scholar 

  67. Thurman, R.E., Day, N., Noble, W.S. & Stamatoyannopoulos, J.A. Identification of higher-order functional domains in the human ENCODE regions. Genome Res. 17, 917–927 (2007).

    Article  CAS  Google Scholar 

  68. Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012).

    Article  CAS  Google Scholar 

  69. Cock, P.J.A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article  CAS  Google Scholar 

  70. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  71. Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004).

    Article  CAS  Google Scholar 

  72. Taylor, J., Schenck, I., Blankenberg, D. & Nekrutenko, A. Using Galaxy to perform large-scale interactive data analyses. Curr. Protoc. Bioinformatics 19, 10.5 (2002).

    Google Scholar 

  73. Du, P., Kibbe, W.A. & Lin, S.M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Delrow, A. Dawson and R. Basom for microarray analysis, P. Hendrie for MVM data, T. Canfield for Repli-Seq processing and R. Hirata and R. Stolitenko for technical assistance. This work was supported by grants from the US National Institutes of Health (R01DK55759, P01HL53750 and R01AR48328) to D.W.R., (K08AR053917) to D.R.D. and (U54HG007010 and P01HL53750) to R.S.H. and J.A.S. This work was also supported by grants from the Australian Department of Innovation, Industry, Science and Research (CG130052) to D.W.R., I.E.A. and C.-L.W., and the Genome Institute of Singapore (GIS) funded by the Agency for Science, Technology and Research (A*STAR), Singapore, to C.-L.W.

Author information

Authors and Affiliations

Authors

Contributions

D.R.D., R.S.H., A.M.C., C.-L.W., I.E.A. and D.W.R. designed experiments. A.M.C. performed gene targeting and plasmid rescue experiments. C.-L.W. performed high-throughput sequencing. R.S.H. and R.S.S. conducted the Repli-Seq experiments and processed the data. A.A.B. provided bioinformatics support. D.R.D. performed target-site mapping, bioinformatics processing, microarray analysis and data collection. L.B.L. mapped the MVM vector target site. J.A.S. and I.E.A. provided support for the project. D.R.D., R.S.H., A.M.C. and D.W.R. analyzed the data and wrote the manuscript. All authors commented on the manuscript. D.W.R. supervised the project.

Corresponding author

Correspondence to David W Russell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Lack of influence of neighboring genetic elements on targeting.

The percentage of targeted, control, and random sites found within each interval (per kb) is shown in relation to short interspersed nuclear elements (SINE), long terminal repeats, long interspersed nuclear elements (LINE), DNA repeats, simple repeats, CpG islands, microsatellite repeats, and DNase I hypersensitive sites. The x-axis displays the binned distances up to 10 kb upstream and downstream from elements, with absolute values of distances used for elements that lack a sequence orientation. There were no significant differences between targeted and untargeted sites (P > 0.05, Chi-square test).

Supplementary Figure 2 Transcription and replication effects on targeting in very long genes.

(a) The number of very long chromosomal genes (>500 kb) containing the random, targeted or untargeted sites analyzed in this study is shown with their relative transcription and replication fork directions. (b) The number of very long chromosomal genes is shown with their transcription direction relative to that of the neo gene. (c) The number of targeted, untargeted or random sites located in very long genes is shown with their neo transcript direction compared to replication fork direction. Transcription directions of random sites were assigned randomly in Excel. *Statistically significant comparisons (P<0.05, Chi-square test) are indicated by asterisks.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Tables 2 and 3 (PDF 98 kb)

Supplementary Table 1

Genomic positions of uniquely mapped targeted and untargeted sites (XLSX 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deyle, D., Hansen, R., Cornea, A. et al. A genome-wide map of adeno-associated virus–mediated human gene targeting. Nat Struct Mol Biol 21, 969–975 (2014). https://doi.org/10.1038/nsmb.2895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing