Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LEDGF (p75) promotes DNA-end resection and homologous recombination

Abstract

Lens epithelium–derived growth factor p75 splice variant (LEDGF) is a chromatin-binding protein known for its antiapoptotic activity and ability to direct human immunodeficiency virus into active transcription units. Here we show that LEDGF promotes the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. Depletion of LEDGF impairs the recruitment of C-terminal binding protein interacting protein (CtIP) to DNA DSBs and the subsequent CtIP-dependent DNA-end resection. LEDGF is constitutively associated with chromatin through its Pro-Trp-Trp-Pro (PWWP) domain that binds preferentially to epigenetic methyl-lysine histone markers characteristic of active transcription units. LEDGF binds CtIP in a DNA damage–dependent manner, thereby enhancing its tethering to the active chromatin and facilitating its access to DNA DSBs. These data highlight the role of PWWP-domain proteins in DNA repair and provide a molecular explanation for the antiapoptotic and cancer cell survival–activities of LEDGF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LEDGF depletion sensitizes cells to ionizing radiation, camptothecin and mitomycin C.
Figure 2: LEDGF depletion inhibits DNA repair.
Figure 3: LEDGF facilitates homologous recombination in S- and G2-phase cells.
Figure 4: LEDGF promotes DNA-end resection.
Figure 5: Chromatin-bound LEDGF tethers CtIP to chromatin.
Figure 6: CtIP is tethered to LEDGF-decorated active chromatin markers.

Similar content being viewed by others

References

  1. Daugaard, M. et al. Lens epithelium-derived growth factor is an Hsp70–2 regulated guardian of lysosomal stability in human cancer. Cancer Res. 67, 2559–2567 (2007).

    Article  CAS  Google Scholar 

  2. Llano, M. et al. Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J. Mol. Biol. 360, 760–773 (2006).

    Article  CAS  Google Scholar 

  3. Ge, H., Si, Y. & Wolffe, A.P. A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2. Mol. Cell 2, 751–759 (1998).

    Article  CAS  Google Scholar 

  4. Brown-Bryan, T.A. et al. Alternative splicing and caspase-mediated cleavage generate antagonistic variants of the stress oncoprotein LEDGF/p75. Mol. Cancer Res. 6, 1293–1307 (2008).

    Article  CAS  Google Scholar 

  5. Nishizawa, Y., Usukura, J., Singh, D.P., Chylack, L.T. Jr. & Shinohara, T. Spatial and temporal dynamics of two alternatively spliced regulatory factors, lens epithelium-derived growth factor (ledgf/p75) and p52, in the nucleus. Cell Tissue Res. 305, 107–114 (2001).

    Article  CAS  Google Scholar 

  6. Dietz, F. et al. The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem. J. 366, 491–500 (2002).

    Article  CAS  Google Scholar 

  7. Sutherland, H.G. et al. Disruption of ledgf/psip1 results in perinatal mortality and homeotic skeletal transformations. Mol. Cell. Biol. 26, 7201–7210 (2006).

    Article  CAS  Google Scholar 

  8. Bartholomeeusen, K. et al. Lens epithelium derived growth factor/p75 interacts with the transposase derived DDE domain of pogZ. J. Biol. Chem. 284, 11467–11477 (2009).

    Article  CAS  Google Scholar 

  9. Hughes, S., Jenkins, V., Dar, M.J., Engelman, A. & Cherepanov, P. Transcriptional co-activator LEDGF interacts with Cdc7-activator of S-phase kinase (ASK) and stimulates its enzymatic activity. J. Biol. Chem. 285, 541–554 (2010).

    Article  CAS  Google Scholar 

  10. Maertens, G.N., Cherepanov, P. & Engelman, A. Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin. J. Cell Sci. 119, 2563–2571 (2006).

    Article  CAS  Google Scholar 

  11. Yokoyama, A. & Cleary, M.L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008).

    Article  CAS  Google Scholar 

  12. Ciuffi, A. et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11, 1287–1289 (2005).

    Article  CAS  Google Scholar 

  13. Shun, M.C. et al. Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J. Virol. 82, 11555–11567 (2008).

    Article  CAS  Google Scholar 

  14. Ciuffi, A. Mechanisms governing lentivirus integration site selection. Curr. Gene Ther. 8, 419–429 (2008).

    Article  CAS  Google Scholar 

  15. De Rijck, J., Bartholomeeusen, K., Ceulemans, H., Debyser, Z. & Gijsbers, R. High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res. 38, 6135–6147 (2010).

    Article  CAS  Google Scholar 

  16. De Luca, L. et al. Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorg. Med. Chem. 18, 7515–7521 (2010).

    Article  CAS  Google Scholar 

  17. Vets, S. et al. Lens epithelium-derived growth factor/p75 qualifies as a target for HIV gene therapy in the NSG mouse model. Mol. Ther. 20, 908–917 (2012).

    Article  CAS  Google Scholar 

  18. De Luca, L., Ferro, S., Morreale, F. & Chimirri, A. Inhibition of the interaction between HIV-1 integrase and its cofactor LEDGF/p75: a promising approach in anti-retroviral therapy. Mini Rev. Med. Chem. 11, 714–727 (2011).

    Article  CAS  Google Scholar 

  19. Hussey, D.J., Moore, S., Nicola, M. & Dobrovic, A. Fusion of the NUP98 gene with the LEDGF/p52 gene defines a recurrent acute myeloid leukemia translocation. BMC Genet. 2, 20 (2001).

    Article  CAS  Google Scholar 

  20. Daniels, T. et al. Antinuclear autoantibodies in prostate cancer: immunity to LEDGF/p75, a survival protein highly expressed in prostate tumors and cleaved during apoptosis. Prostate 62, 14–26 (2005).

    Article  CAS  Google Scholar 

  21. Matsui, H., Lin, L.R., Singh, D.P., Shinohara, T. & Reddy, V.N. Lens epithelium-derived growth factor: increased survival and decreased DNA breakage of human RPE cells induced by oxidative stress. Invest. Ophthalmol. Vis. Sci. 42, 2935–2941 (2001).

    CAS  PubMed  Google Scholar 

  22. Wang, Y. et al. Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. Mol. Cell 33, 428–437 (2009).

    Article  CAS  Google Scholar 

  23. Laguri, C. et al. Human mismatch repair protein MSH6 contains a PWWP domain that targets double stranded DNA. Biochemistry 47, 6199–6207 (2008).

    Article  CAS  Google Scholar 

  24. Huen, M.S. et al. Regulation of chromatin architecture by the PWWP domain-containing DNA damage-responsive factor EXPAND1/MUM1. Mol. Cell 37, 854–864 (2010).

    Article  CAS  Google Scholar 

  25. Kousholt, A.N. et al. CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation. J. Cell Biol. (in the press).

  26. Moynahan, M.E., Cui, T.Y. & Jasin, M. Homology-directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 61, 4842–4850 (2001).

    CAS  PubMed  Google Scholar 

  27. Sartori, A.A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    Article  CAS  Google Scholar 

  28. Spencer, D.M. et al. DNA repair in response to anthracycline-DNA adducts: a role for both homologous recombination and nucleotide excision repair. Mutat. Res. 638, 110–121 (2008).

    Article  CAS  Google Scholar 

  29. Caldecott, K.W. Single-strand break repair and genetic disease. Nat. Rev. Genet. 9, 619–631 (2008).

    Article  CAS  Google Scholar 

  30. Jackson, S.P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  Google Scholar 

  31. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  Google Scholar 

  32. Bryant, H.E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  Google Scholar 

  33. Pierce, A.J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).

    Article  CAS  Google Scholar 

  34. Huertas, P. DNA resection in eukaryotes: deciding how to fix the break. Nat. Struct. Mol. Biol. 17, 11–16 (2010).

    Article  CAS  Google Scholar 

  35. Garcia, V., Phelps, S.E.L., Gray, S. & Neale, M.J. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241–244 (2011).

    Article  CAS  Google Scholar 

  36. Bernstein, K.A. & Rothstein, R. At loose ends: resecting a double-strand break. Cell 137, 807–810 (2009).

    Article  CAS  Google Scholar 

  37. Bekker-Jensen, S. et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173, 195–206 (2006).

    Article  CAS  Google Scholar 

  38. Shao, R.G. et al. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J. 18, 1397–1406 (1999).

    Article  CAS  Google Scholar 

  39. Manthey, K.C. et al. NBS1 mediates ATR-dependent RPA hyperphosphorylation following replication-fork stall and collapse. J. Cell Sci. 120, 4221–4229 (2007).

    Article  CAS  Google Scholar 

  40. You, Z. et al. CtIP links DNA double-strand break sensing to resection. Mol. Cell 36, 954–969 (2009).

    Article  CAS  Google Scholar 

  41. Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat. Cell Biol. 5, 255–260 (2003).

    Article  CAS  Google Scholar 

  42. Cherepanov, P. et al. Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat. Struct. Mol. Biol. 12, 526–532 (2005).

    Article  CAS  Google Scholar 

  43. Vezzoli, A. et al. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat. Struct. Mol. Biol. 17, 617–619 (2010).

    Article  CAS  Google Scholar 

  44. Dhayalan, A. et al. The DNMT3A PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J. Biol. Chem. 285, 26114–26120 (2010).

    Article  CAS  Google Scholar 

  45. Saunders, A., Core, L.J. & Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  Google Scholar 

  46. Liu, F. & Lee, W.H. CtIP activates its own and cyclin D1 promoters via the E2F/RB pathway during G1/S progression. Mol. Cell. Biol. 26, 3124–3134 (2006).

    Article  CAS  Google Scholar 

  47. Bennardo, N., Cheng, A., Huang, N. & Stark, J.M. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 4, e1000110 (2008).

    Article  Google Scholar 

  48. Chen, P.L. et al. Inactivation of CtIP leads to early embryonic lethality mediated by G1 restraint and to tumorigenesis by haploid insufficiency. Mol. Cell. Biol. 25, 3535–3542 (2005).

    Article  CAS  Google Scholar 

  49. Lim, D.S. & Hasty, P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16, 7133–7143 (1996).

    Article  CAS  Google Scholar 

  50. Wang, Y. et al. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat. Genet. 37, 750–755 (2005).

    Article  CAS  Google Scholar 

  51. Vermeulen, M. et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967–980 (2010).

    Article  CAS  Google Scholar 

  52. Skalka, A.M. & Katz, R.A. Retroviral DNA integration and the DNA damage response. Cell Death Differ. 12 (suppl. 1), 971–978 (2005).

    Article  CAS  Google Scholar 

  53. Katz, R.A., Greger, J.G. & Skalka, A.M. Effects of cell cycle status on early events in retroviral replication. J. Cell. Biochem. 94, 880–889 (2005).

    Article  CAS  Google Scholar 

  54. Sinclair, A., Yarranton, S. & Schelcher, C. DNA-damage response pathways triggered by viral replication. Expert Rev. Mol. Med. 8, 1–11 (2006).

    Article  Google Scholar 

  55. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006).

    Article  CAS  Google Scholar 

  56. Llorente, B., Smith, C.E. & Symington, L.S. Break-induced replication: what is it and what is it for? Cell Cycle 7, 859–864 (2008).

    Article  CAS  Google Scholar 

  57. Lukas, C., Falck, J., Bartkova, J., Bartek, J. & Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat. Cell Biol. 5, 255–260 (2003).

    Article  CAS  Google Scholar 

  58. Beck, H. et al. Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. J. Cell Biol. 188, 629–638 (2010).

    Article  CAS  Google Scholar 

  59. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Engelman (Dana-Farber Cancer Institute, Harvard Medical School) for providing us with Psip1-deficient cells, K.G. Henriksen for technical assistance and L. Vinner for discussions regarding HIV integration. This work was supported by the Danish Cancer Society and the Novo Nordisk Foundation (M.D., J.L., J.B. and M.J.), the Danish National Research Foundation and the John and Birthe Meyer Foundation (J.L., J.B. and M.J.), the Danish Medical Research Council, the Lundbeck Foundation and the European Commission FP7 (APO-SYS) (M.J.), and DDResponse, Biomedreg and INFLA-CARE (J.B).

Author information

Authors and Affiliations

Authors

Contributions

M.D. and M.J. designed the project and wrote the manuscript; M.D. and A.B. performed most of the experiments, supported by K.F., L.K.P., H.B., N.H.T.P. and M.R.; and C.S.S., C.L., J.L., J.B. and P.H.B.S. provided essential knowhow and support for the project and for preparing the manuscript.

Corresponding authors

Correspondence to Mads Daugaard or Marja Jäättelä.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2783 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daugaard, M., Baude, A., Fugger, K. et al. LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol 19, 803–810 (2012). https://doi.org/10.1038/nsmb.2314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing