Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure of a viral genome-delivery portal vertex

Abstract

DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here, we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25-Å-resolution structure of the portal-protein core bound to 12 copies of gene product 4 (gp4) reveals a ~1.1-MDa assembly formed by 24 proteins. Unexpectedly, a lower-resolution structure of the full-length portal protein unveils the unique topology of the C-terminal domain, which forms a ~200-Å-long α-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the bacteriophage P22 portal protein and the portal-protein core–gp4 complex.
Figure 2: Fitting of P22 portal protein and gp4 X-ray models into the cryo-EM reconstructions of the mature virion and isolated portal vertex structure.
Figure 3: The portal-protein fold.
Figure 4: Three-dimensional structure of the middle ring factor gp4.
Figure 5: Structural conservation of the middle ring factor gp4.
Figure 6: Architecture of the DNA-translocating channel.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lander, G.C. et al. The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312, 1791–1795 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, J.E. & Chiu, W. DNA packaging and delivery machines in tailed bacteriophages. Curr. Opin. Struct. Biol. 17, 237–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Casjens, S. & Weigele, P. Headful DNA packaging by bacteriophage P22. in Viral Genome Packaging Machines: Genetics, Structure and Mechanism (ed. Catalano, C.) 80–88 (Landes Publishing, Georgetown, Texas, USA, 2005).

  4. Ackermann, H.W. Bacteriophage observations and evolution. Res. Microbiol. 154, 245–251 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Teschke, C.M. & Parent, K.N. 'Let the phage do the work': using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants. Virology 401, 119–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Chang, J., Weigele, P., King, J., Chiu, W. & Jiang, W. Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery. Structure 14, 1073–1082 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Lander, G.C. et al. The P22 tail machine at subnanometer resolution reveals the architecture of an infection conduit. Structure 17, 789–799 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olia, A.S., Bhardwaj, A., Joss, L., Casjens, S. & Cingolani, G. Role of gene 10 protein in the hierarchical assembly of the bacteriophage P22 portal vertex structure. Biochemistry 46, 8776–8784 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Strauss, H. & King, J. Steps in the stabilization of newly packaged DNA during phage P22 morphogenesis. J. Mol. Biol. 172, 523–543 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Olia, A.S., Casjens, S. & Cingolani, G. Structural plasticity of the phage P22 tail needle gp26 probed with xenon gas. Protein Sci. 18, 537–548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Olia, A.S., Casjens, S. & Cingolani, G. Structure of phage P22 cell envelope-penetrating needle. Nat. Struct. Mol. Biol. 14, 1221–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Bhardwaj, A., Walker-Kopp, N., Casjens, S.R. & Cingolani, G. An evolutionarily conserved family of virion tail needles related to bacteriophage P22 gp26: correlation between structural stability and length of the alpha-helical trimeric coiled coil. J. Mol. Biol. 391, 227–245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olia, A.S. et al. Binding-induced stabilization and assembly of the phage P22 tail accessory factor gp4. J. Mol. Biol. 363, 558–576 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Lorenzen, K., Olia, A.S., Uetrecht, C., Cingolani, G. & Heck, A.J. Determination of stoichiometry and conformational changes in the first step of the P22 tail assembly. J. Mol. Biol. 379, 385–396 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Israel, V. E proteins of bacteriophage P22. I. Identification and ejection from wild-type and defective particles. J. Virol. 23, 91–97 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lenk, E., Casjens, S., Weeks, J. & King, J. Intracellular visualization of precursor capsids in phage P22 mutant infected cells. Virology 68, 182–199 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Simpson, A.A. et al. Structure of the bacteriophage phi29 DNA packaging motor. Nature 408, 745–750 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bazinet, C., Benbasat, J., King, J., Carazo, J.M. & Carrascosa, J.L. Purification and organization of the gene 1 portal protein required for phage P22 DNA packaging. Biochemistry 27, 1849–1856 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Simpson, A.A. et al. Structure determination of the head-tail connector of bacteriophage phi29. Acta Crystallogr. D Biol. Crystallogr. 57, 1260–1269 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Guasch, A. et al. Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage phi29 connector particle. J. Mol. Biol. 315, 663–676 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Guo, P.X., Erickson, S. & Anderson, D. A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science 236, 690–694 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Orlova, E.V. et al. Structure of the 13-fold symmetric portal protein of bacteriophage SPP1. Nat. Struct. Biol. 6, 842–846 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Lebedev, A.A. et al. Structural framework for DNA translocation via the viral portal protein. EMBO J. 26, 1984–1994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lurz, R. et al. Structural organisation of the head-to-tail interface of a bacterial virus. J. Mol. Biol. 310, 1027–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Orlova, E.V. et al. Structure of a viral DNA gatekeeper at 10 A resolution by cryo-electron microscopy. EMBO J. 22, 1255–1262 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cingolani, G., Moore, S.D., Prevelige, P.E. Jr. & Johnson, J.E. Preliminary crystallographic analysis of the bacteriophage P22 portal protein. J. Struct. Biol. 139, 46–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Trus, B.L. et al. Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J. Virol. 78, 12668–12671 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Newcomb, W.W. et al. The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J. Virol. 75, 10923–10932 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng, H. et al. A conformational switch in bacteriophage p22 portal protein primes genome injection. Mol. Cell 29, 376–383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Steinbacher, S. et al. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Steinbacher, S. et al. Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 A, fully refined structure of the endorhamnosidase at 1.56 A resolution, and the molecular basis of O-antigen recognition and cleavage. J. Mol. Biol. 267, 865–880 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Moore, S.D. & Prevelige, P.E. Jr. Structural transformations accompanying the assembly of bacteriophage P22 portal protein rings in vitro. J. Biol. Chem. 276, 6779–6788 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Guo, L., Han, A., Bates, D.L., Cao, J. & Chen, L. Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains. Proc. Natl. Acad. Sci. USA 104, 4297–4302 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eppler, K., Wyckoff, E., Goates, J., Parr, R. & Casjens, S. Nucleotide sequence of the bacteriophage P22 genes required for DNA packaging. Virology 183, 519–538 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Lhuillier, S. et al. Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proc. Natl. Acad. Sci. USA 106, 8507–8512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cardarelli, L. et al. The crystal structure of bacteriophage HK97 gp6: defining a large family of head-tail connector proteins. J. Mol. Biol. 395, 754–768 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, H. et al. Crystal structure of the DNA-recognition component of the bacterial virus Sf6 genome-packaging machine. Proc. Natl. Acad. Sci. USA 107, 1971–1976 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vlieghe, D., Turkenburg, J.P. & Van Meervelt, L. B-DNA at atomic resolution reveals extended hydration patterns. Acta Crystallogr. D Biol. Crystallogr. 55, 1495–1502 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Hendrix, R.W. Symmetry mismatch and DNA packaging in large bacteriophages. Proc. Natl. Acad. Sci. USA 75, 4779–4783 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casjens, S. et al. Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. J. Mol. Biol. 224, 1055–1074 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Cuervo, A., Vaney, M.C., Antson, A.A., Tavares, P. & Oliveira, L. Structural rearrangements between portal protein subunits are essential for viral DNA translocation. J. Biol. Chem. 282, 18907–18913 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Hugel, T. et al. Experimental test of connector rotation during DNA packaging into bacteriophage phi29 capsids. PLoS Biol. 5, e59 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Baumann, R.G., Mullaney, J. & Black, L.W. Portal fusion protein constraints on function in DNA packaging of bacteriophage T4. Mol. Microbiol. 61, 16–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Guy, A.E. A practical method of calculating the powder pressure and the velocity of projectile along the bore of a cannon. J. Am. Soc. Nav. Eng. 33, 720–734 (1921).

    Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Collaborative Computational Project. Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  51. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  52. Painter, J. & Merritt, E.A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 39, 109–111 (2006).

    Article  CAS  Google Scholar 

  53. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Stojanoff and staff at the National Synchrotron Light Source beamlines X6A, X25 and X29A and the staff of the Macromolecular Diffraction Facility at the Cornell High Energy Synchrotron Source (macCHESS) for beam time and assistance in data collection. This work was supported by US National Institutes of Health grants 1R56 AI076509-01A1 (to G.C.) and RO1 AI40101 (to J.E.J.).

Author information

Authors and Affiliations

Authors

Contributions

A.S.O. and G.C. crystallized the full-length portal and portal-protein core–gp4 complex, collected the X-ray data and determined the structures. P.E.P. isolated the gene encoding P22 portal protein and helped with data analysis. J.E.J. supervised the crystallization and data collection of full-length portal protein and helped with data analysis. G.C. coordinated the overall project and wrote the manuscript with A.S.O.

Corresponding author

Correspondence to Gino Cingolani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 4149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olia, A., Prevelige, P., Johnson, J. et al. Three-dimensional structure of a viral genome-delivery portal vertex. Nat Struct Mol Biol 18, 597–603 (2011). https://doi.org/10.1038/nsmb.2023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing