Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation switches the general splicing repressor SRp38 to a sequence-specific activator

Abstract

SRp38 is an atypical SR protein that functions as a general splicing repressor when dephosphorylated. We now show that phosphorylated SRp38 functions as a sequence-specific splicing activator. Unlike characterized splicing activators, SRp38 functions in the absence of other SR proteins but requires a cofactor for activity. SRp38 was able to induce formation of splicing complex A in the absence of the cofactor, but this factor was necessary for progression to complexes B and C. Mechanistically, SRp38 strengthens the ability of the U1 and U2 small nuclear ribonucleoproteins to stably recognize the pre-mRNA. Extending these findings, analysis of alternative splicing of pre-mRNA encoding the glutamate receptor B revealed that SRp38 alters its splicing pattern in a sequence-specific manner. Together, our data demonstrate that SRp38, in addition to its role as a splicing repressor, can function as an unusual sequence-specific splicing activator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SRp38 functions as a sequence-specific activator of splicing.
Figure 2: Characteristics of SRp38-dependent splicing activation.
Figure 3: SRp38 promotes formation of spliceosomal complex A.
Figure 4: SRp38 interacts with both U1 and U2 snRNP complexes on the SRp38 substrate.
Figure 5: SRp38 binds to and activates splicing of RNA substrates containing the GluR-B Flip or Flop exon.
Figure 6: Loss of SRp38 promotes inclusion of the Flop exon in vivo.
Figure 7: Model for SRp38-dependent splicing activation.

Similar content being viewed by others

References

  1. Black, D.L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367–370 (2000).

    Article  CAS  Google Scholar 

  2. Johnson, J.M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    Article  CAS  Google Scholar 

  3. Jurica, M.S. & Moore, M.J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).

    Article  CAS  Google Scholar 

  4. Smith, C.W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  Google Scholar 

  5. Stamm, S. Regulation of alternative splicing by reversible protein phosphorylation. J. Biol. Chem. 283, 1223–1227 (2008).

    Article  CAS  Google Scholar 

  6. David, C.J. & Manley, J.L. The search for alternative splicing regulators: new approaches offer a path to a splicing code. Genes Dev. 22, 279–285 (2008).

    Article  CAS  Google Scholar 

  7. Wang, J., Smith, P.J., Krainer, A.R. & Zhang, M.Q. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Nucleic Acids Res. 33, 5053–5062 (2005).

    Article  CAS  Google Scholar 

  8. Tanaka, K., Watakabe, A. & Shimura, Y. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol. 14, 1347–1354 (1994).

    Article  CAS  Google Scholar 

  9. Tacke, R., Tohyama, M., Ogawa, S. & Manley, J.L. Human TRA2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 93, 139–148 (1998).

    Article  CAS  Google Scholar 

  10. Goren, A. et al. Comparative analysis identifies exonic splicing regulatory sequences—the complex definition of enhancers and silencers. Mol. Cell 22, 769–781 (2006).

    Article  CAS  Google Scholar 

  11. Zheng, Z.M. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J. Biomed. Sci. 11, 278–294 (2004).

    Article  CAS  Google Scholar 

  12. Manley, J.L. & Tacke, R. SR proteins and splicing control. Genes Dev. 10, 1569–1579 (1996).

    Article  CAS  Google Scholar 

  13. Graveley, B.R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000).

    Article  CAS  Google Scholar 

  14. Hastings, M.L. & Krainer, A.R. Pre-mRNA splicing in the new millennium. Curr. Opin. Cell Biol. 13, 302–309 (2001).

    Article  CAS  Google Scholar 

  15. Wu, J.Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).

    Article  CAS  Google Scholar 

  16. Kohtz, J.D. et al. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368, 119–124 (1994).

    Article  CAS  Google Scholar 

  17. Shen, H. & Green, M.R. RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev. 20, 1755–1765 (2006).

    Article  CAS  Google Scholar 

  18. Hertel, K.J. & Graveley, B.R. RS domains contact the pre-mRNA throughout spliceosome assembly. Trends Biochem. Sci. 30, 115–118 (2005).

    Article  CAS  Google Scholar 

  19. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  Google Scholar 

  20. Wang, Z., Hoffmann, H.M. & Grabowski, P.J. Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity. RNA 1, 21–35 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zuo, P. & Maniatis, T. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 10, 1356–1368 (1996).

    Article  CAS  Google Scholar 

  22. Eldridge, A.G., Li, Y., Sharp, P.A. & Blencowe, B.J. The SRm160/300 splicing coactivator is required for exon-enhancer function. Proc. Natl. Acad. Sci. USA 96, 6125–6130 (1999).

    Article  CAS  Google Scholar 

  23. Li, Y. & Blencowe, B.J. Distinct factor requirements for exonic splicing enhancer function and binding of U2AF to the polypyrimidine tract. J. Biol. Chem. 274, 35074–35079 (1999).

    Article  CAS  Google Scholar 

  24. Ryner, L.C. et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079–1089 (1996).

    Article  CAS  Google Scholar 

  25. Shin, C., Feng, Y. & Manley, J.L. Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427, 553–558 (2004).

    Article  CAS  Google Scholar 

  26. Shin, C. & Manley, J.L. The SR protein SRp38 represses splicing in M phase cells. Cell 111, 407–417 (2002).

    Article  CAS  Google Scholar 

  27. Shi, Y. & Manley, J.L. A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock. Mol. Cell 28, 79–90 (2007).

    Article  CAS  Google Scholar 

  28. Shin, C., Kleiman, F.E. & Manley, J.L. Multiple properties of the splicing repressor SRp38 distinguish it from typical SR proteins. Mol. Cell. Biol. 25, 8334–8343 (2005).

    Article  CAS  Google Scholar 

  29. Prasad, J., Colwill, K., Pawson, T. & Manley, J.L. The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol. Cell. Biol. 19, 6991–7000 (1999).

    Article  CAS  Google Scholar 

  30. Ruskin, B., Zamore, P.D. & Green, M.R. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 52, 207–219 (1988).

    Article  CAS  Google Scholar 

  31. Komatsu, M., Kominami, E., Arahata, K. & Tsukahara, T. Cloning and characterization of two neural-salient serine/arginine-rich (NSSR) proteins involved in the regulation of alternative splicing in neurones. Genes Cells 4, 593–606 (1999).

    Article  CAS  Google Scholar 

  32. Sommer, B. et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585 (1990).

    Article  CAS  Google Scholar 

  33. Chen, X. et al. Tra2βl regulates P19 neuronal differentiation and the splicing of FGF-2R and GluR-B minigenes. Cell Biol. Int. 28, 791–799 (2004).

    Article  CAS  Google Scholar 

  34. Tacke, R. & Manley, J.L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14, 3540–3551 (1995).

    Article  CAS  Google Scholar 

  35. Tacke, R., Chen, Y. & Manley, J.L. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94, 1148–1153 (1997).

    Article  CAS  Google Scholar 

  36. Graveley, B.R. & Maniatis, T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol. Cell 1, 765–771 (1998).

    Article  CAS  Google Scholar 

  37. Shen, H., Kan, J.L. & Green, M.R. Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly. Mol. Cell 13, 367–376 (2004).

    Article  CAS  Google Scholar 

  38. Xiao, S.H. & Manley, J.L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11, 334–344 (1997).

    Article  CAS  Google Scholar 

  39. Xiao, S.H. & Manley, J.L. Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J. 17, 6359–6367 (1998).

    Article  CAS  Google Scholar 

  40. Dye, B.T., Buvoli, M., Mayer, S.A., Lin, C.H. & Patton, J.G. Enhancer elements activate the weak 3′ splice site of α-tropomyosin exon 2. RNA 4, 1523–1536 (1998).

    Article  CAS  Google Scholar 

  41. Wang, J. & Bell, L.R. The Sex-lethal amino terminus mediates cooperative interactions in RNA binding and is essential for splicing regulation. Genes Dev. 8, 2072–2085 (1994).

    Article  CAS  Google Scholar 

  42. Tacke, R. & Manley, J.L. Functions of SR and Tra2 proteins in pre-mRNA splicing regulation. Proc. Soc. Exp. Biol. Med. 220, 59–63 (1999).

    CAS  PubMed  Google Scholar 

  43. Li, X., Shambaugh, M.E., Rottman, F.M. & Bokar, J.A. SR proteins Asf/SF2 and 9G8 interact to activate enhancer-dependent intron D splicing of bovine growth hormone pre-mRNA in vitro. RNA 6, 1847–1858 (2000).

    Article  CAS  Google Scholar 

  44. Roscigno, R.F. & Garcia-Blanco, M.A. SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1, 692–706 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tarn, W.Y. & Steitz, J.A. Modulation of 5′ splice site choice in pre-messenger RNA by two distinct steps. Proc. Natl. Acad. Sci. USA 92, 2504–2508 (1995).

    Article  CAS  Google Scholar 

  46. Crovato, T.E. & Egebjerg, J. ASF/SF2 and SC35 regulate the glutamate receptor subunit 2 alternative flip/flop splicing. FEBS Lett. 579, 4138–4144 (2005).

    Article  CAS  Google Scholar 

  47. Fisher, C.L. & Pei, G.K. Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23, 570–571 574 (1997).

    Article  CAS  Google Scholar 

  48. Arakawa, H., Lodygin, D. & Buerstedde, J.M. Mutant loxP vectors for selectable marker recycle and conditional knock-outs. BMC Biotechnol. 1, 7 (2001).

    Article  CAS  Google Scholar 

  49. Das, R. & Reed, R. Resolution of the mammalian E complex and the ATP-dependent spliceosomal complexes on native agarose mini-gels. RNA 5, 1504–1508 (1999).

    Article  CAS  Google Scholar 

  50. Wang, J. & Manley, J.L. Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways. RNA 1, 335–346 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Lührmann (Max Planck Institute for Biophysical Chemistry, Germany) for providing purified U1 and U2 snRNP, T. Kashima (Columbia University, New York) for SR proteins and C. Shin (Columbia University, New York) for His-dSRp38. We thank A. Yang for help with the manuscript. We also thank members of the Manley laboratory for helpful discussions and comments. This work was supported by the US National Institutes of Health grant NIH GM48259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L Manley.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Chen, M. & Manley, J. Phosphorylation switches the general splicing repressor SRp38 to a sequence-specific activator. Nat Struct Mol Biol 15, 1040–1048 (2008). https://doi.org/10.1038/nsmb.1485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing