Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tom40 protein import channel binds to non-native proteins and prevents their aggregation

Abstract

Mitochondria contain the translocator of the outer mitochondrial membrane (TOM) for protein entry into the organelle, and its subunit Tom40 forms a protein-conducting channel. Here we report the role of Tom40 in protein translocation across the membrane. The site-specific photocrosslinking experiment revealed that translocating unfolded or loosely folded precursor segments of up to 90 residues can be associated with Tom40. Purified Tom40 bound to non-native proteins and suppressed their aggregation when they are prone to aggregate. A denatured protein bound to the Tom40 channel blocked the protein import into mitochondria. These results indicate that, in contrast to the nonstick tunnel of the ribosome for polypeptide exit, the Tom40 channel offers an optimized environment to translocating non-native precursor proteins by preventing their aggregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Site-specific photocrosslinking of the MTX-arrested pb2(330)-DHFR.
Figure 2: Proteinase K digestion of the MTX-arrested pb2(330)-DHFR.
Figure 3: Tom40 crosslinked to unfolded or loosely folded segments of the MTX-arrested cytochrome b2–DHFR fusion proteins.
Figure 4: Tom40 binds to and/or suppresses aggregation of non-native proteins.
Figure 5: Blocking of protein import into mitochondria by urea-denatured proteins.

Similar content being viewed by others

References

  1. Schatz, G. & Dobberstein, N. Common principles of protein translocation across membranes. Science 271, 1519–1526 (1996).

    Article  CAS  Google Scholar 

  2. Simon, S.M. & Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell 65, 371–380 (1991).

    Article  CAS  Google Scholar 

  3. Matlack, K.E., Motes, W. & Rapoport, T.A. Protein translocation: tunnel vision. Cell 92, 381–390 (1998).

    Article  CAS  Google Scholar 

  4. Meyer, T.H. et al. The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. J. Mol. Biol. 285, 1789–1800 (1999).

    Article  CAS  Google Scholar 

  5. Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721–732 (1996).

    Article  CAS  Google Scholar 

  6. Künkele, K-P. et al. The protein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019 (1998).

    Article  Google Scholar 

  7. Ungermann, C., Neupert, W. & Cyr, D.M. The role of Hsp70 in conferring unidirectionality of protein translocation into mitochondria. Science 266, 1250–1253 (1994).

    Article  CAS  Google Scholar 

  8. Nissen, P., Hansem, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  9. Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997).

    Article  CAS  Google Scholar 

  10. Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell. Biol. 2, 339–349 (2001).

    Article  CAS  Google Scholar 

  11. Endo, T., Yamamoto, H. & Esaki, M. Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. J. Cell Sci. 116, 3259–3267 (2003).

    Article  CAS  Google Scholar 

  12. Endo, T. & Kohda, D. Functions of outer membrane receptors in mitochondrial protein import. Biochim. Biophys. Acta 1592, 3–14 (2002).

    Article  CAS  Google Scholar 

  13. Eilers, M. & Schatz, G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322, 228–232 (1986).

    Article  CAS  Google Scholar 

  14. Hill, K. et al. Tom40 forms a hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521 (1998).

    Article  CAS  Google Scholar 

  15. Gordon, D.M., Amutha, B. & Pain, D. Self-association and precursor protein binding of Saccharomyces cerevisiae Tom40p, the core component of the protein translocation channel of the mitochondrial outer membrane. Biochem. J. 356, 207–215 (2001).

    Article  CAS  Google Scholar 

  16. Stan, T. et al. Recognition of preproteins by the isolated TOM complex of mitochondria. EMBO J. 19, 4895–4902 (2000).

    Article  CAS  Google Scholar 

  17. Brunner, J. Use of photocrosslinkers in cell biology. Trends Cell Biol. 6, 154–157 (1996).

    Article  CAS  Google Scholar 

  18. Kanamori, T. et al. Probing the environment along the protein import pathways in yeast mitochondria by site-specific photocrosslinking. Proc. Natl. Acad. Sci. USA 94, 485–490 (1997).

    Article  CAS  Google Scholar 

  19. Esaki, M., Kanamori, T., Nishikawa, S. & Endo, T. Two distinct mechanisms drive protein translocation across the mitochondrial outer membrane in the late step of the cytochrome b2 import pathway. Proc. Natl. Acad. Sci. USA 96, 11770–11775 (1999).

    Article  CAS  Google Scholar 

  20. Glick, B.S., Wachter, C., Reid, G.A. & Schatz, G. Import of cytochrome b2 to the mitochondrial intermembrane space: the tightly folded heme-binding domain makes import dependent upon matrix ATP. Protein Sci. 2, 1901–1917 (1993).

    Article  CAS  Google Scholar 

  21. Xia, Z.-X. & Mathews, F.S. Molecular structure of flavocytochrome b2 at 2.4 Å resolution. J. Mol. Biol. 212, 837–863 (1990).

    Article  CAS  Google Scholar 

  22. Leonhard, K., Stiegler, A., Neupert, W. & Langer, T. Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398, 348–351 (1999).

    Article  CAS  Google Scholar 

  23. Siegert, R., Leroux, M.R., Scheufler, C., Hartl, F.U. & Moarefi, I. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103, 621–632 (2000).

    Article  CAS  Google Scholar 

  24. Neupert, W. & Brunner, M. The protein import motor of mitochondria. Nat. Rev. Mol. Cell Biol. 3, 555–565 (2002).

    Article  CAS  Google Scholar 

  25. Matouschek, A. et al. Active unfolding of precursor proteins during mitochondrial protein import. EMBO J. 16, 6727–6736 (1997).

    Article  CAS  Google Scholar 

  26. Gaume, B. et al. Unfolding of preproteins upon import into mitochondria. EMBO J. 17, 6497–6507 (1998).

    Article  CAS  Google Scholar 

  27. Mayer, A., Neupert, W. & Lill, R. Mitochondrial protein import: reversible binding of the presequence at the trans side of the outer membrane drives partial translocation and unfolding. Cell 80 127–137 (1995).

    Article  CAS  Google Scholar 

  28. Kanamori, T. et al. Uncoupling of transfer of the presequence and unfolding of the mature domain in precursor translocation across the mitochondrial outer membrane. Proc. Natl. Acad. Sci. USA 96, 3634–3639 (1999).

    Article  CAS  Google Scholar 

  29. Voos, W. & Pfanner, N. The role of chaperone proteins in the import and assembly of proteins in mitochondria and chloroplasts. in Molecular Chaperones in the Cell (ed. Lund, P.) 61–89 (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  30. Ahting, U. et al. Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J. Cell Biol. 153, 1151–1160 (2001).

    Article  CAS  Google Scholar 

  31. Koehler, C.M., Merchant, S. & Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 24, 428–432 (1999).

    Article  CAS  Google Scholar 

  32. Bauer, M.F., Hofmann, S., Neupert, W. & Brunner, M. Protein translocation into mitochondria: the role of TIM complex. Trends Cell Biol. 10, 25–31 (2000).

    Article  CAS  Google Scholar 

  33. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  34. Nishikawa, S., Fewell, S.W., Kato, Y., Brodsky, J.L. & Endo, T. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J. Cell Biol. 153, 1061–1069 (2001).

    Article  CAS  Google Scholar 

  35. Endo, T., Mitsui, S. & Roise, D. Mitochondrial presequences can induce aggregation of unfolded proteins. FEBS Lett. 359, 93–96 (1995).

    Article  CAS  Google Scholar 

  36. Deshaies, R.J. & Scheckman, R. SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. J. Cell Biol. 109, 2653–2664 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support of this work by Grants-in-aid for Scientific Research from the Japan Ministry of Education, Culture, Sports Science and Technology (MEXT), a grant from Japan Science and Technology Agency (T.E.) and a Grant for Joint Research Project in Korea (I.S.). We thank T. Hohsaka and M. Sisido for the advice on charging of BPA to suppressor tRNA, and members of the Endo laboratory for discussions and comments. M.E. is a Japan Society for the Promotion of Science (JSPS) Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiya Endo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esaki, M., Kanamori, T., Nishikawa, Si. et al. Tom40 protein import channel binds to non-native proteins and prevents their aggregation. Nat Struct Mol Biol 10, 988–994 (2003). https://doi.org/10.1038/nsb1008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing