Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of cytochrome P450eryF involved in erythromycin biosynthesis

Abstract

Cytochrome P450eryF catalyzes the 6S-hydroxylation of 6-deoxyerythronolide B, the initial reaction in a multistep pathway to convert 6-deoxyerythronolide B into the antibiotic, erythromycin. The overall structure of P450eryF is similar to that of P450cam but differs in the exact positioning of several α-helices. The largest difference occurs in the B′ helix and results in the enlargement of the substrate-binding pocket of P450eryF. The substrate is positioned with the macrolide ring perpendicular to the haem plane and contacts seven hydrophobic residues and three solvent molecules. The substrate participates in a network of hydrogen bonds that may provide a proton shuttle pathway in the oxygen cleavage reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Andersen, J.F. & Hutchinson, C.R. Characterization of Saccharopolyspora erythaea cytochrome P450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase. J. Bacteriol. 174, 725–735 (1992).

    Article  CAS  Google Scholar 

  2. Shafiee, A. & Hutchinson, C.R. Purification and reconstitution of the electron transport components of 6-deoxyerthronolide B hydroxylase, a cytochrome P450 enzyme macrolide antibiotic (erythromycin) biosynthesis. J. Bacteriol. 170, 1548–1553 (1988).

    Article  CAS  Google Scholar 

  3. Zotchev, S.B. & Hutchinson, C.R. Cloning and heterologous expression of the genes encoding nonspecific electron transport components for a cytochrome P450 system of Saccharopolyspora erythraea involved in erythromycin production. Biochemistry (1994)

  4. Raag, R. & Poulos, T.L. X-ray crystallographic studies of P450cam; factors controlling substrate metabolism in Frontiers in Biotransformations, (eds Ruckpaul, K. & Rein, H.) 1–43, (Akademia Verlag; 1992).

  5. Poulos, T.L., Finzel, B.C. & Howard, A.J. Crystal structure of substrate-free Pseudomonas putida cytochrome P–450. Biochemistry 25, 5314–5322 (1986).

    Article  CAS  Google Scholar 

  6. Poulos, T.L., Finzel, B.C. & Howard, A.J. High-resolution crystal structure of cytochrome P450cam. J. molec. Biol. 195, 687–700 (1987).

    Article  CAS  Google Scholar 

  7. Nelson, D.R. & Stobel, H.W. On the membrane topology of vertebrate cytochrome P450 proteins. J. Biol. Chem. 263, 6038–6050 (1988).

    CAS  PubMed  Google Scholar 

  8. Vijayakumar, S. & Salerno, J.C. Molecular modeling of the 3-D structure of cytochrome P450scc. Biochim. biophys. Acta 1160, 281–286 (1992).

    Article  CAS  Google Scholar 

  9. Cupp-Vickery, J.R., Li, H. & Poulos, T.L. Preliminary crystallographic analysis of an enzyme involved in erythromycin biosynthesis: cytochrome P450eryF. Proteins (1994).

  10. Nelson, D.R. & Strobel, H.W. Secondary structure prediction of 52 membrane-bound cytochromes P-450 shows a stron structural similarity to P450cam. Biochemistry 28, 656–660 (1989).

    Article  CAS  Google Scholar 

  11. Ravichandran, K.G., Boodupalli, S.S., Hasemann, C.A., Peterson, J.A., Deisenhofer, J. Crystal structure of hemoprotein domain of P450BM-3′ a prototype for microsomal P-450s. Science 261, 731–736 (1993).

    Article  CAS  Google Scholar 

  12. Li, H. & Poulos, T.L. Modeling protein-substrate interactions in the haem domain of cytochrome P450BM-3. Acta crystallogr. D in the press (1994).

    Google Scholar 

  13. Haseman, C.A., Ravichandran, K.G., Peterson, J.A. & Deisenhofer, J. Crystal structure and refinement of cytochrome P450terp at 2.3 resolution. J. molec. Biol. 236, 1169–1185 (1994).

    Article  Google Scholar 

  14. Evans, S.V. SETOR: Hardware-lighted three-dimensional solid model representations of macromolecules. J. molec. Graphics. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  15. Raag, R. & Poulos, T.L. Crystal structures of cytochrorme P450cam complexed with camphane, thiocamphor, and adamantane: factors controlling P450 substrate hydroxylation. Biochemistry 30, 2674–2684 (1991).

    Article  CAS  Google Scholar 

  16. Li, H. & Poulos, T.L. Structural variation in haem enzymes: a comparative analysis of peroxidase and P450 crystal structures. Structure 2, 461–464 (1994).

    Article  CAS  Google Scholar 

  17. Poulos, T.L., Edwards, S.L., Wariishi, H. & Gold, M.H. Crystallographic refinement of lignin peroxidase at 2 Å. Biol. Chem. 268, 4429–4440 (1993).

    CAS  Google Scholar 

  18. Quiocho, F.A., Wilson, D.K., Wilson, D.K. & Vyas, N.K. Substrate specificity and affinity of a protein modulated by bound water molecules. Nature 340, 404–407 (1989).

    Article  CAS  Google Scholar 

  19. Andersen, J.F., Tatsuta, K., Gunji, H., Ishiyama, T. & Hutchinson, C.R. Substrate specificity of 6-deoxyerythronlide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis. Biochemistry 32, 1905–1913 (1993).

    Article  CAS  Google Scholar 

  20. Matinis, S.A., Atkins, W.M., Stayton, P.S. & Sligar, S.G. A conserved residue of P450 involved in haem-oxygen stability and activation. J. Am. chem. Soc. 111, 9252–9253 (1989).

    Article  Google Scholar 

  21. Imai, M. et al. Uncoupling the cytochrome P450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: a possible role of hydroxy amino acid in oxygen activation. Proc. natn. Acad. Sci. U.S.A. 86, 7823–7827 (1989).

    Article  CAS  Google Scholar 

  22. Raag, R., Martinis, S.A., Sligar, S.G. & Poulos, T.L. Crystal structure of the cytochrome P450cam acive site mutant Thr252Ala. Biochemistry 20, 11420–11429 (1991).

    Article  Google Scholar 

  23. SAXII Area Detector Software Release Notes for Version 1.21 (Siemes Analytical X-ray Instruments, Inc.).

  24. Howard, A.J., Gilliland, G.L., Finzel, B.C., Poulos, T.L., Ohlendorf, D.H. & Salemme, F.R. The use of an imaging proportional counter in macromolecular crystallography. J. appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  25. Furey, W. Am. crystallogr. Assoc., 2, 18–73 (1990).

    Google Scholar 

  26. Brunger, A.T. X-PLOR Version 3.1. A system for X-ray crystallography and NMR. (New Haven, Yale University Press; 1992).

  27. Fitzgerald, P.M.D. A package of computer programs for the determination of phases using molecular replacement. J. appl. Crystallogr. 21, 275–278 (1988).

    Article  Google Scholar 

  28. Read, R.J. Improved fourier coefficients for maps using phases from partial structures with errors. Acta crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  29. Evans, P.R. Crystallographic computing 5, (eds Moras, D. et al., 136–144. Oxford University Press, 1991).

    Google Scholar 

  30. Zhang, K.Y.J. & Maine, P. The use of Sayreis equation with solvent flattening and histogram matching for phase extension and refinement of protein structues. Acta crystallogr. A46, 377–381 (1990).

    Article  CAS  Google Scholar 

  31. Cowtan, K.D. & Maine, P. Improvement of macromolecular electron density maps by the simultaneous application of real and reciprocal space constrains. Acta crystallogr. D49, 148–157 (1993).

    CAS  Google Scholar 

  32. Cambillau, C. & Harjales, E. TOM: a FRODO subpackage for protein-ligand fitting with interactive energy minimization. J. molec. Graphics 5, 174–177 (1987).

    Article  CAS  Google Scholar 

  33. Flinta, C., Persson, B., Jornvall, H. & von Heijne, G. Sequence determinants of cytosolic N-terminal protein processing. E. J. Biochem. 154, 193–196 (1994).

    Article  Google Scholar 

  34. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cupp-Vickery, J., Poulos, T. Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nat Struct Mol Biol 2, 144–153 (1995). https://doi.org/10.1038/nsb0295-144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0295-144

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing