Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Receptors, channels, and signalling in the urothelial sensory system in the bladder

Key Points

  • Complex neural pathways coordinate the activities of the urinary bladder. The bladder reflex exists in two modes of operation, storage and elimination. The elimination phase is triggered by urothelial mechanosensors

  • Urothelial cells exhibit specialized sensory and signalling properties enabling responses to stimuli and release of chemical mediators, and express diverse receptors and ion channels linked to mechanoceptive and nociceptive sensations

  • The urothelium secretes many signalling molecules (including neurotrophins, neuropeptides, acetylcholine, prostaglandins, nitric oxide, and cytokines); but ATP seems to be the main messenger in voiding reflexes and pain

  • Transient receptor potential (TRP) channels from different subfamilies are expressed in the bladder, exhibit specific distributions in the lower urinary tract, and are implicated in its normal and pathological physiology

  • The urothelium expresses purinergic receptors and releases neuroactive chemicals, including ATP, from its apical and basolateral surfaces in response to stimuli

  • Current research is focusing on the identification of novel targets in the sensory limb of the micturition reflex (such as TRP channels and purinergic neurotransmission) to treat sensory voiding disorders

Abstract

The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of micturition reflex control and cell layers of the wall of the urinary bladder.
Figure 2: Illustration of low-level afferent nerve discharge that is present throughout bladder filling.
Figure 3: Hypothetical model of purinergic mechanosensory transduction and the involvement of TRP channels in the LUT focusing on potential interactions among bladder sensory nerves, urothelial cells, detrusor smooth muscle cells and ICC.

Similar content being viewed by others

References

  1. Tank, P. W. Grant's dissector (ed. Stacey, S. L.) (Lippincott Williams & Wilkins, 2009).

    Google Scholar 

  2. Birder, L. & Andersson, K. E. Urothelial signaling. Physiol. Rev. 93, 653–680 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Andersson, K. E. & McCloskey, K. D. Lamina propria: the functional center of the bladder? Neurourol. Urodyn. 33, 9–16 (2013).

    PubMed  Google Scholar 

  4. Davidson, R. A. & McCloskey, K. D. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J. Urol. 173, 1385–1390 (2005).

    PubMed  Google Scholar 

  5. Andersson, K. E. & Arner, A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev. 84, 935–986 (2004).

    CAS  PubMed  Google Scholar 

  6. Krstic, R. V. Human Microscopic Anatomy: an Atlas for Students in Medicine and Biology (Springer, 2004).

    Google Scholar 

  7. Yucel, S. & Baskin, L. S. An anatomical description of the male and female urethral sphincter complex. J. Urol. 171, 1890–1897 (2004).

    PubMed  Google Scholar 

  8. Elbadawi, A. Functional anatomy of the organs of micturition. Urol. Clin. North Am. 23, 177–210 (1996).

    CAS  PubMed  Google Scholar 

  9. Kingsley, R. E., Gable, S. R., Kingsley, T. R. & Saint Joseph Medical Center (South Bend Ind.) Magnetic Resonance Imaging Center. Concise Text of Neuroscience (Williams & Wilkins, 1996).

    Google Scholar 

  10. Fowler, C. J., Griffiths, D. & de Groat, W. C. The neural control of micturition. Nat. Rev. Neurosci. 9, 453–466 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sengupta, J. N. Visceral pain: the neurophysiological mechanism. Handb. Exp. Pharmacol. 194, 31–74 (2009).

    CAS  Google Scholar 

  12. Apodaca, G., Balestreire, E. & Birder, L. A. The uroepithelial-associated sensory web. Kidney Int. 72, 1057–1064 (2007).

    CAS  PubMed  Google Scholar 

  13. Birder, L. A. & de Groat, W. C. Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nat. Clin. Pract. Urol. 4, 46–54 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Templeman, L., Chapple, C. R. & Chess-Williams, R. Urothelium derived inhibitory factor and cross-talk among receptors in the trigone of the bladder of the pig. J. Urol. 167, 742–745 (2002).

    CAS  PubMed  Google Scholar 

  15. Ferguson, D. R., Kennedy, I. & Burton, T. J. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes — a possible sensory mechanism? J. Physiol. 505, 503–511 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vlaskovska, M. et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J. Neurosci. 21, 5670–5677 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).

    CAS  PubMed  Google Scholar 

  18. Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat. Neurosci. 5, 856–860 (2002).

    CAS  PubMed  Google Scholar 

  19. Birder, L. A., Hanna-Mitchell, A. T. & Kanai, A. J. in Visceral Pain (ed. Bjorling, D. E.) 45–70 (Research Signpost, 2009).

    Google Scholar 

  20. Studeny, S., Torabi, A. & Vizzard, M. A. P2X2 and P2X3 receptor expression in postnatal and adult rat urinary bladder and lumbosacral spinal cord. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1155–R1168 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. LaBerge, J., Malley, S. E., Zvarova, K. & Vizzard, M. A. Expression of corticotropin-releasing factor and CRF receptors in micturition pathways after cyclophosphamide-induced cystitis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R692–R703 (2006).

    CAS  PubMed  Google Scholar 

  22. Brady, C. M. et al. P2X3-immunoreactive nerve fibres in neurogenic detrusor overactivity and the effect of intravesical resiniferatoxin. Eur. Urol. 46, 247–253 (2004).

    CAS  PubMed  Google Scholar 

  23. Apostolidis, A. et al. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 65, 400–405 (2005).

    PubMed  Google Scholar 

  24. Gonzalez, E. J., Merrill, L. & Vizzard, M. A. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R869–R878 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Arms, L. & Vizzard, M. A. Neuropeptides in lower urinary tract function. Handb. Exp. Pharmacol. 2011, 395–423 (2011).

    Google Scholar 

  26. Birder, L. A., Andersson, K. E., Kanai, A. J., Hanna-Mitchell, A. T. & Fry, C. H. Urothelial mucosal signaling and the overactive bladder-ICI-RS 2013. Neurourol. Urodyn. 33, 597–601 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Li, Y. et al. Expression and electrophysiological characteristics of P2X3 receptors in interstitial cells of Cajal in rats with partial bladder outlet obstruction. BJU Int. 111, 843–851 (2013).

    CAS  PubMed  Google Scholar 

  28. Dattilio, A. & Vizzard, M. A. Up-regulation of protease activated receptors in bladder after cyclophosphamide induced cystitis and colocalization with capsaicin receptor (VR1) in bladder nerve fibers. J. Urol. 173, 635–639 (2005).

    CAS  PubMed  Google Scholar 

  29. Corrow, K., Girard, B. M. & Vizzard, M. A. Expression and response of acid-sensing ion channels in urinary bladder to cyclophosphamide-induced cystitis. Am. J. Physiol. Renal Physiol. 298, F1130–F1139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiao, L. Y. & Vizzard, M. A. Spinal cord injury-induced expression of TrkA, TrkB, phosphorylated CREB, and c-Jun in rat lumbosacral dorsal root ganglia. J. Comp. Neurol. 482, 142–154 (2005).

    CAS  PubMed  Google Scholar 

  31. Qiao, L. Y. & Vizzard, M. A. Cystitis-induced upregulation of tyrosine kinase (TrkA, TrkB) receptor expression and phosphorylation in rat micturition pathways. J. Comp. Neurol. 454, 200–211 (2002).

    CAS  PubMed  Google Scholar 

  32. Qiao, L. & Vizzard, M. A. Up-regulation of tyrosine kinase (Trka, Trkb) receptor expression and phosphorylation in lumbosacral dorsal root ganglia after chronic spinal cord (T8–T10) injury. J. Comp. Neurol. 449, 217–230 (2002).

    CAS  PubMed  Google Scholar 

  33. Murray, E., Malley, S. E., Qiao, L. Y., Hu, V. Y. & Vizzard, M. A. Cyclophosphamide induced cystitis alters neurotrophin and receptor tyrosine kinase expression in pelvic ganglia and bladder. J. Urol. 172, 2434–2439 (2004).

    CAS  PubMed  Google Scholar 

  34. Deruyver, Y., Voets, T., De Ridder, D. & Everaerts, W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int. 115, 686–697 (2015).

    CAS  PubMed  Google Scholar 

  35. Skryma, R., Prevarskaya, N., Gkika, D. & Shuba, Y. From urgency to frequency: facts and controversies of TRPs in the lower urinary tract. Nat. Rev. Urol. 8, 617–630 (2011).

    CAS  PubMed  Google Scholar 

  36. Merrill, L., Girard, B. M., May, V. & Vizzard, M. A. Transcriptional and translational plasticity in rodent urinary bladder TRP channels with urinary bladder inflammation, bladder dysfunction, or postnatal maturation. J. Mol. Neurosci. 48, 744–756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Merrill, L., Girard, B., Arms, L., Guertin, P. & Vizzard, M. A. Neuropeptide/receptor expression and plasticity in micturition pathways. Curr. Pharm. Des. 19, 4411–4422 (2013).

    CAS  PubMed  Google Scholar 

  38. Gonzalez, E. J., Arms, L. & Vizzard, M. A. The role(s) of cytokines/chemokines in urinary bladder inflammation and dysfunction. Biomed. Res. Int. 2014, 120525 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Arms, L., Girard, B. M. & Vizzard, M. A. Expression and function of CXCL12/CXCR4 in rat urinary bladder with cyclophosphamide-induced cystitis. Am. J. Physiol. Renal Physiol. 298, F589–F600 (2010).

    CAS  PubMed  Google Scholar 

  40. Arms, L., Girard, B. M., Malley, S. E. & Vizzard, M. A. Expression and function of CCL2/CCR2 in rat micturition reflexes and somatic sensitivity with urinary bladder inflammation. Am. J. Physiol. Renal Physiol. 305, F111–F122 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Birder, L. A. More than just a barrier: urothelium as a drug target for urinary bladder pain. Am. J. Physiol. Renal Physiol. 289, F489–F495 (2005).

    CAS  PubMed  Google Scholar 

  42. Burnstock, G. Purinergic signalling in the lower urinary tract. Acta Physiol. (Oxf.) 207, 40–52 (2013).

    CAS  Google Scholar 

  43. Burnstock, G. Purinergic mechanosensory transduction and visceral pain. Mol. Pain 5, 69 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Moran, M. M., McAlexander, M. A., Biro, T. & Szallasi, A. Transient receptor potential channels as therapeutic targets. Nat. Rev. Drug Discov. 10, 601–620 (2011).

    CAS  PubMed  Google Scholar 

  45. Everaerts, W. et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl Acad. Sci. USA 107, 19084–19089 (2010).

    CAS  PubMed  Google Scholar 

  46. Andersson, K. E., Gratzke, C. & Hedlund, P. The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int. 106, 1114–1127 (2010).

    CAS  PubMed  Google Scholar 

  47. Eid, S. R. Therapeutic targeting of TRP channels — the TR(i)P to pain relief. Curr. Top. Med. Chem. 11, 2118–2130 (2011).

    CAS  PubMed  Google Scholar 

  48. Araki, I. TRP channels in urinary bladder mechanosensation. Adv. Exp. Med. Biol. 704, 861–879 (2011).

    CAS  PubMed  Google Scholar 

  49. Everaerts, W., Gevaert, T., Nilius, B. & De Ridder, D. On the origin of bladder sensing: Tr(i)ps in urology. Neurourol. Urodyn. 27, 264–273 (2008).

    CAS  PubMed  Google Scholar 

  50. Minagawa, T., Aizawa, N., Igawa, Y. & Wyndaele, J. J. The role of transient receptor potential ankyrin 1 (TRPA1) channel in activation of single unit mechanosensitive bladder afferent activities in the rat. Neurourol. Urodyn. 33, 544–549 (2014).

    CAS  PubMed  Google Scholar 

  51. Yu, W., Hill, W. G., Apodaca, G. & Zeidel, M. L. Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am. J. Physiol. Renal Physiol. 300, F49–F59 (2011).

    CAS  PubMed  Google Scholar 

  52. Nilius, B., Owsianik, G., Voets, T. & Peters, J. A. Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165–217 (2007).

    CAS  PubMed  Google Scholar 

  53. Streng, T. et al. Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur. Urol. 53, 391–399 (2008).

    CAS  PubMed  Google Scholar 

  54. Kobayashi, K. et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with aδ/c-fibers and colocalization with trk receptors. J. Comp. Neurol. 493, 596–606 (2005).

    CAS  PubMed  Google Scholar 

  55. Du, S. et al. Differential expression profile of cold (TRPA1) and cool (TRPM8) receptors in human urogenital organs. Urology 72, 450–455 (2008).

    PubMed  Google Scholar 

  56. Everaerts, W. et al. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am. J. Physiol. Renal Physiol. 298, F692–F701 (2010).

    CAS  PubMed  Google Scholar 

  57. Du, S., Araki, I., Yoshiyama, M., Nomura, T. & Takeda, M. Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology 70, 826–831 (2007).

    PubMed  Google Scholar 

  58. Andrade, E. L., Ferreira, J., Andre, E. & Calixto, J. B. Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder. Biochem. Pharmacol. 72, 104–114 (2006).

    CAS  PubMed  Google Scholar 

  59. Birder, L. A. et al. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl Acad. Sci. USA 98, 13396–13401 (2001).

    CAS  PubMed  Google Scholar 

  60. Park, U. et al. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J. Neurosci. 31, 11425–11436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Boudes, M. et al. Crucial role of TRPC1 and TRPC4 in cystitis-induced neuronal sprouting and bladder overactivity. PLoS ONE 8, e69550 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stein, R. J. et al. Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J. Urol. 172, 1175–1178 (2004).

    CAS  PubMed  Google Scholar 

  63. Ito, H. et al. Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry and ex vivo measurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int. http://dx.doi.org/10.1111/bju.13225 (2015).

  64. Uvin, P. et al. Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency. Eur. Urol. 68, 655–661 (2015).

    CAS  PubMed  Google Scholar 

  65. Geirsson, G., Lindstrom, S. & Fall, M. The bladder cooling reflex and the use of cooling as stimulus to the lower urinary tract. J. Urol. 162, 1890–1896 (1999).

    CAS  PubMed  Google Scholar 

  66. Tsukimi, Y., Mizuyachi, K., Yamasaki, T., Niki, T. & Hayashi, F. Cold response of the bladder in guinea pig: involvement of transient receptor potential channel, TRPM8. Urology 65, 406–410 (2005).

    PubMed  Google Scholar 

  67. Nomoto, Y. et al. Effect of menthol on detrusor smooth-muscle contraction and the micturition reflex in rats. Urology 72, 701–705 (2008).

    PubMed  Google Scholar 

  68. Homma, Y. et al. Increased mRNA expression of genes involved in pronociceptive inflammatory reactions in bladder tissue of interstitial cystitis. J. Urol. 190, 1925–1931 (2013).

    CAS  PubMed  Google Scholar 

  69. Cao, Q. F. et al. TRPM2 mediates histone deacetylase inhibition-induced apoptosis in bladder cancer cells. Cancer Biother. Radiopharm. 30, 87–93 (2015).

    CAS  PubMed  Google Scholar 

  70. Mizuno, H. et al. Potential role of transient receptor potential (TRP) channels in bladder cancer cells. J. Physiol. Sci. 64, 305–314 (2014).

    CAS  PubMed  Google Scholar 

  71. Charrua, A. et al. Functional transient receptor potential vanilloid 1 is expressed in human urothelial cells. J. Urol. 182, 2944–2950 (2009).

    CAS  PubMed  Google Scholar 

  72. Kullmann, F. A., Shah, M. A., Birder, L. A. & de Groat, W. C. Functional TRP and ASIC-like channels in cultured urothelial cells from the rat. Am. J. Physiol. Renal Physiol. 296, F892–F901 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lazzeri, M. et al. Immunohistochemical evidence of vanilloid receptor 1 in normal human urinary bladder. Eur. Urol. 46, 792–798 (2004).

    CAS  PubMed  Google Scholar 

  74. Heng, Y. J. et al. TRPV1, NK1 receptor and substance P immunoreactivity and gene expression in the rat lumbosacral spinal cord and urinary bladder after systemic, low dose vanilloid administration. Regul. Pept. 167, 250–258 (2011).

    CAS  PubMed  Google Scholar 

  75. Everaerts, W. et al. Where is TRPV1 expressed in the bladder, do we see the real channel? Naunyn Schmiedebergs Arch. Pharmacol. 379, 421–425 (2009).

    CAS  PubMed  Google Scholar 

  76. Yamada, T. et al. Differential localizations of the transient receptor potential channels TRPV4 and TRPV1 in the mouse urinary bladder. J. Histochem. Cytochem. 57, 277–287 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu, W. et al. Defining protein expression in the urothelium: a problem of more than transitional interest. Am. J. Physiol. Renal Physiol. 301, F932–F942 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu, X. et al. Functional TRPV4 channels and an absence of capsaicin-evoked currents in freshly-isolated, guinea-pig urothelial cells. Channels (Austin) 3, 156–160 (2009).

    CAS  Google Scholar 

  79. Cavanaugh, D. J. et al. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J. Neurosci. 13, 5067–5077 (2011).

    Google Scholar 

  80. de Seze, M. et al. Capsaicin and neurogenic detrusor hyperreflexia: a double-blind placebo-controlled study in 20 patients with spinal cord lesions. Neurourol. Urodyn. 17, 513–523 (1998).

    CAS  PubMed  Google Scholar 

  81. Kennelly, M. J. & Devoe, W. B. Overactive bladder: pharmacologic treatments in the neurogenic population. Rev. Urol. 10, 182–191 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Bijos, D. A., Drake, M. J. & Vahabi, B. Anoctamin-1 in the juvenile rat urinary bladder. PLoS ONE 9, e106190 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Takayama, Y., Uta, D., Furue, H. & Tominaga, M. Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc. Natl Acad. Sci. USA 112, 5213–5218 (2015).

    CAS  PubMed  Google Scholar 

  84. Gevaert, T. et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Invest. 117, 3453–3462 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Birder, L. et al. Activation of urothelial transient receptor potential vanilloid 4 by 4α-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J. Pharmacol. Exp. Ther. 323, 227–235 (2007).

    CAS  PubMed  Google Scholar 

  86. Mochizuki, T. et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J. Biol. Chem. 284, 21257–21264 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Thorneloe, K. S. et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J. Pharmacol. Exp. Ther. 326, 432–442 (2008).

    CAS  PubMed  Google Scholar 

  88. Alexander, R. et al. 4α-phorbol 12,13-didecanoate activates cultured mouse dorsal root ganglia neurons independently of TRPV4. Br. J. Pharmacol. 168, 761–772 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Girard, B. M., Merrill, L., Malley, S. & Vizzard, M. A. Increased TRPV4 expression in urinary bladder and lumbosacral dorsal root ganglia in mice with chronic overexpression of NGF in urothelium. J. Mol. Neurosci. 51, 602–614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Suzuki, M. et al. Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci. Lett. 353, 189–192 (2003).

    CAS  PubMed  Google Scholar 

  91. Aizawa, N., Wyndaele, J. J., Homma, Y. & Igawa, Y. Effects of TRPV4 cation channel activation on the primary bladder afferent activities of the rat. Neurourol. Urodyn. 31, 148–155 (2012).

    CAS  PubMed  Google Scholar 

  92. Birder, L. A. Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vascul. Pharmacol. 45, 221–226 (2006).

    CAS  PubMed  Google Scholar 

  93. Sadananda, P., Shang, F., Liu, L., Mansfield, K. J. & Burcher, E. Release of ATP from rat urinary bladder mucosa: role of acid, vanilloids and stretch. Br. J. Pharmacol. 158, 1655–1662 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. McLatchie, L. M. & Fry, C. H. ATP release from freshly isolated guinea-pig bladder urothelial cells: a quantification and study of the mechanisms involved. BJU Int. 115, 987–993 (2015).

    CAS  PubMed  Google Scholar 

  95. Burnstock, G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal. 10, 103–155 (2014).

    CAS  PubMed  Google Scholar 

  96. Wang, E. C. et al. ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J. Clin. Invest. 115, 2412–2422 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bodin, P. & Burnstock, G. Purinergic signalling: ATP release. Neurochem. Res. 26, 959–969 (2001).

    CAS  PubMed  Google Scholar 

  98. Schwiebert, E. M. & Zsembery, A. Extracellular ATP as a signaling molecule for epithelial cells. Biochim. Biophys. Acta 1615, 7–32 (2003).

    CAS  PubMed  Google Scholar 

  99. Dunning-Davies, B. M., Fry, C. H., Mansour, D. & Ferguson, D. R. The regulation of ATP release from the urothelium by adenosine and transepithelial potential. BJU Int. 111, 505–513 (2013).

    CAS  PubMed  Google Scholar 

  100. Yu, W., Zacharia, L. C., Jackson, E. K. & Apodaca, G. Adenosine receptor expression and function in bladder uroepithelium. Am. J. Physiol. Cell Physiol. 291, C254–C265 (2006).

    CAS  PubMed  Google Scholar 

  101. Gopalakrishnan, S. M. et al. Functional characterization of adenosine receptors and coupling to ATP-sensitive K+ channels in guinea pig urinary bladder smooth muscle. J. Pharmacol. Exp. Ther. 300, 910–917 (2002).

    CAS  PubMed  Google Scholar 

  102. Yang, S. J. et al. The mechanism of contraction by 2-chloroadenosine in cat detrusor muscle cells. J. Urol. 163, 652–658 (2000).

    CAS  PubMed  Google Scholar 

  103. Mansfield, K. J. & Hughes, J. R. P2Y receptor modulation of ATP release in the urothelium. Biomed. Res. Int. 2014, 830374 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Chopra, B. et al. Expression and function of rat urothelial P2Y receptors. Am. J. Physiol. Renal Physiol. 294, F821–F829 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tempest, H. V. et al. P2X and P2X receptor expression in human bladder urothelium and changes in interstitial cystitis. BJU Int. 93, 1344–1348 (2004).

    CAS  PubMed  Google Scholar 

  106. Lee, H. Y., Bardini, M. & Burnstock, G. Distribution of P2X receptors in the urinary bladder and the ureter of the rat. J. Urol. 163, 2002–2007 (2000).

    CAS  PubMed  Google Scholar 

  107. Sui, G. et al. Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions. Am. J. Physiol. Renal Physiol. 306, F286–F298 (2014).

    CAS  PubMed  Google Scholar 

  108. Sui, G. P., Wu, C. & Fry, C. H. Characterization of the purinergic receptor subtype on guinea-pig suburothelial myofibroblasts. BJU Int. 97, 1327–1331 (2006).

    CAS  PubMed  Google Scholar 

  109. Wu, C., Sui, G. P. & Fry, C. H. Purinergic regulation of guinea pig suburothelial myofibroblasts. J. Physiol. 559, 231–243 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Drumm, B. T., Koh, S. D., Andersson, K. E. & Ward, S. M. Calcium signalling in Cajal-like interstitial cells of the lower urinary tract. Nat. Rev. Urol. 11, 555–564 (2014).

    CAS  PubMed  Google Scholar 

  111. Dutton, J. L., Hansen, M. A., Balcar, V. J., Barden, J. A. & Bennett, M. R. Development of P2X receptor clusters on smooth muscle cells in relation to nerve varicosities in the rat urinary bladder. J. Neurocytol 28, 4–16 (1999).

    CAS  PubMed  Google Scholar 

  112. Vial, C. & Evans, R. J. P2X receptor expression in mouse urinary bladder and the requirement of P2X1 receptors for functional P2X receptor responses in the mouse urinary bladder smooth muscle. Br. J. Pharmacol. 131, 1489–1495 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu, W., Sun, X., Robson, S. C. & Hill, W. G. Extracellular UDP enhances P2X-mediated bladder smooth muscle contractility via P2Y6 activation of the phospholipase C/inositol trisphosphate pathway. FASEB J. 27, 1895–1903 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ruan, H. Z. et al. Localization of P2X and P2Y receptors in dorsal root ganglia of the cat. J. Histochem. Cytochem. 53, 1273–1282 (2005).

    CAS  PubMed  Google Scholar 

  115. Chen, X. & Gebhart, G. F. Differential purinergic signaling in bladder sensory neurons of naive and bladder-inflamed mice. Pain 148, 462–472 (2010).

    CAS  PubMed  Google Scholar 

  116. Xiang, Z., Bo, X. & Burnstock, G. Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci. Lett. 256, 105–108 (1998).

    CAS  PubMed  Google Scholar 

  117. Kaan, T. K. et al. Endogenous purinergic control of bladder activity via presynaptic P2X3 and P2X2/3 receptors in the spinal cord. J. Neurosci. 30, 4503–4507 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rong, W., Spyer, K. M. & Burnstock, G. Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J. Physiol. 541, 591–600 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cockayne, D. A. et al. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J. Physiol. 567, 621–639 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen, X., Molliver, D. C. & Gebhart, G. F. The P2Y2 receptor sensitizes mouse bladder sensory neurons and facilitates purinergic currents. J. Neurosci. 30, 2365–2372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Brady, C. M. et al. Parallel changes in bladder suburothelial vanilloid receptor TRPV1 and pan-neuronal marker PGP9.5 immunoreactivity in patients with neurogenic detrusor overactivity after intravesical resiniferatoxin treatment. BJU Int. 93, 770–776 (2004).

    CAS  PubMed  Google Scholar 

  122. Abrams, P. et al. The standardisation of terminology of lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Neurourol. Urodyn. 21, 167–178 (2002).

    PubMed  Google Scholar 

  123. Lazzeri, M. et al. Intravesical capsaicin for treatment of severe bladder pain: a randomized placebo controlled study. J. Urol. 156, 947–952 (1996).

    CAS  PubMed  Google Scholar 

  124. Westropp, J. L. & Buffington, C. A. In vivo models of interstitial cystitis. J. Urol. 167, 694–702 (2002).

    PubMed  Google Scholar 

  125. Bazi, T. et al. A modulating effect of epigallocatechin gallate (EGCG), a tea catechin, on the bladder of rats exposed to water avoidance stress. Neurourol. Urodyn. 32, 287–292 (2012).

    PubMed  Google Scholar 

  126. Klausner, A. P. & Steers, W. D. Corticotropin releasing factor: a mediator of emotional influences on bladder function. J. Urol. 172, 2570–2573 (2004).

    CAS  PubMed  Google Scholar 

  127. Rothrock, N. E., Lutgendorf, S. K., Kreder, K. J., Ratliff, T. & Zimmerman, B. Stress and symptoms in patients with interstitial cystitis: a life stress model. Urology 57, 422–427 (2001).

    CAS  PubMed  Google Scholar 

  128. Hammack, S. E. et al. Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34, 833–843 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Solomon, M. B., Jones, K., Packard, B. A. & Herman, J. P. The medial amygdala modulates body weight but not neuroendocrine responses to chronic stress. J. Neuroendocrinol. 22, 13–23 (2010).

    CAS  PubMed  Google Scholar 

  130. Merrill, L., Malley, S. & Vizzard, M. A. Repeated variate stress in male rats induces increased voiding frequency, somatic sensitivity, and urinary bladder nerve growth factor expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R147–R156 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lowe, E. M. et al. Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br. J. Urol. 79, 572–577 (1997).

    CAS  PubMed  Google Scholar 

  132. Okragly, A. J. et al. Elevated tryptase, nerve growth factor, neurotrophin-3 and glial cell line-derived neurotrophic factor levels in the urine of interstitial cystitis and bladder cancer patients. J. Urol. 161, 438–441; discussion 441–442 (1999).

    CAS  PubMed  Google Scholar 

  133. Sun, Y., Keay, S., De Deyne, P. G. & Chai, T. C. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. J. Urol. 166, 1951–1956 (2001).

    CAS  PubMed  Google Scholar 

  134. Silva-Ramos, M. et al. Urinary ATP may be a dynamic biomarker of detrusor overactivity in women with overactive bladder syndrome. PLoS ONE 8, e64696 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sun, Y. & Chai, T. C. Augmented extracellular ATP signaling in bladder urothelial cells from patients with interstitial cystitis. Am. J. Physiol. Cell Physiol. 290, C27–C34 (2006).

    CAS  PubMed  Google Scholar 

  136. Kumar, V., Chapple, C. R., Rosario, D., Tophill, P. R. & Chess-Williams, R. In vitro release of adenosine triphosphate from the urothelium of human bladders with detrusor overactivity, both neurogenic and idiopathic. Eur. Urol. 57, 1087–1092 (2010).

    CAS  PubMed  Google Scholar 

  137. O'Reilly, B. A. et al. P2X receptors and their role in female idiopathic detrusor instability. J. Urol. 167, 157–164 (2002).

    CAS  PubMed  Google Scholar 

  138. O'Reilly, B. A. et al. A quantitative analysis of purinoceptor expression in the bladders of patients with symptomatic outlet obstruction. BJU Int. 87, 617–622 (2001).

    CAS  PubMed  Google Scholar 

  139. Burnstock, G. Therapeutic potential of purinergic signalling for diseases of the urinary tract. BJU Int. 107, 192–204 (2011).

    CAS  PubMed  Google Scholar 

  140. US National Library of Science. Clinical trials.gov[online], (2014).

  141. Hanno, P. M. Afferent clinical data for lead candidate, af-219, demonstrate improvements in pain and urinary urgency in interstitial cystitis / bladder pain syndrome (IC/BPS). Afferent Pharmaceuticals [online].

  142. Payne, C. K. et al. Intravesical resiniferatoxin for the treatment of interstitial cystitis: a randomized, double-blind, placebo controlled trial. J. Urol. 173, 1590–1594 (2005).

    CAS  PubMed  Google Scholar 

  143. Ham, B. K., Kim, J. H., Oh, M. M., Lee, J. G. & Bae, J. H. Effects of combination treatment of intravesical resiniferatoxin instillation and hydrodistention in patients with refractory painful bladder syndrome/interstitial cystitis: a pilot study. Int. Neurourol. J. 16, 41–46 (2012).

    PubMed  PubMed Central  Google Scholar 

  144. Round, P., Priestley, A. & Robinson, J. An investigation of the safety and pharmacokinetics of the novel TRPV1 antagonist XEN-D0501 in healthy subjects. Br. J. Clin. Pharmacol. 72, 921–931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Merrill, L. & Vizzard, M. A. Intravesical TRPV4 blockade reduces repeated variate stress-induced bladder dysfunction by increasing bladder capacity and decreasing voiding frequency in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R471–R480 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. DeBerry, J. J., Schwartz, E. S. & Davis, B. M. TRPA1 mediates bladder hyperalgesia in a mouse model of cystitis. Pain 155, 1280–1287 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lashinger, E. S. et al. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am. J. Physiol. Renal Physiol. 295, F803–F810 (2008).

    CAS  PubMed  Google Scholar 

  148. Lei, Z. et al. Functional roles of transient receptor potential melastatin 8 (TRPM8) channels in the cold stress-induced detrusor overactivity pathways in conscious rats. Neurourol. Urodyn. 32, 500–504 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank current and former members of the Vizzard laboratory who have contributed to the studies described within including: Lauren Arms, Mary Beth Klinger, Susan Malley, Abbey Peterson, Kimberly Corrow, Katarina Zvarova, Peter Zvara, Li-ya Qiao, and Bopaiah P. Cheppudira. Gratitude is expressed to Susan Malley for her assistance in creating the figures and table. Research from the Vizzard laboratory described herein was funded by the National Institutes of Health (NIH) grants DK051369 (M.A.V.), DK060481 (M.A.V.). Additional support was also provided by grants from the National Center for Research Resources (5 P30 RR 032135) and the National Institute of General Medical Sciences (8 P30 GM 103498) from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, discussed content and reviewed the manuscript before submission. M.A.V., L.M. and E.J.G. wrote the article.

Corresponding author

Correspondence to Margaret A. Vizzard.

Ethics declarations

Competing interests

M.A.V. is funded by the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merrill, L., Gonzalez, E., Girard, B. et al. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol 13, 193–204 (2016). https://doi.org/10.1038/nrurol.2016.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing