Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapy in prion disease

Abstract

Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, describe a group of fatal neurodegenerative disorders affecting both humans and animals. Accumulation of misfolded prion proteins is the pathological hallmark of these disorders; such accumulation occurs in lymphoreticular tissue prior to CNS involvement in scrapie, experimental models and human variant Creutzfeldt–Jakob disease. Lymphoreticular accumulation of misfolded prion protein has not been demonstrated in human sporadic or genetic forms of TSE. Once clinical symptoms develop, all prion disorders have a rapidly progressive and lethal course, and no effective therapy exists. In the past 10 years, antibody-based immunotherapy has been considered for other neurodegenerative disorders associated with protein misfolding and, therefore, might also be an effective approach to prevention or treatment of prion disease. Self-tolerance to endogenous prion protein is, however, a major challenge to the development of effective immunotherapy, as is the risk of adverse effects from active immunization. This Review summarizes the evidence that immunization could slow disease progression or increase lifespan in animal models of prion diseases. The therapeutic potential of these strategies in treating patients with prion diseases is also discussed.

Key Points

  • Prion diseases are lethal neurodegenerative disorders for which no effective therapy is currently available

  • Identification of an appropriate prion epitope and circumvention of self-tolerance are major obstacles to inducing a therapeutic immune response

  • Potential therapeutic approaches include active and passive immunization strategies involving endogenous or synthetic prion proteins

  • Promising results for both active and passive immunization strategies have been reported in animal models of prion diseases

  • Active immunization against prion proteins can induce an inflammatory response in the brain; passive immunization might, therefore, be a safer approach

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prusiner, S. B. The prion diseases. Brain Pathol. 8, 499–513 (1998).

    CAS  PubMed  Google Scholar 

  2. McKinley, M. P., Bolton, D. C. & Prusiner, S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell 35, 57–62 (1983).

    CAS  PubMed  Google Scholar 

  3. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001).

    CAS  PubMed  Google Scholar 

  4. Fraser, H. & Dickinson, A. G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226, 462–463 (1970).

    CAS  PubMed  Google Scholar 

  5. Brown, P. Creutzfeldt–Jakob disease: reflections on the risk from blood product therapy. Haemophilia 13 (Suppl. 5), 33–40 (2007).

    CAS  PubMed  Google Scholar 

  6. Hilton, D. A. et al. Specificity of lymphoreticular accumulation of prion protein for variant Creutzfeldt–Jakob disease. J. Clin. Pathol. 57, 300–302 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Glatzel, M., Abela, E., Maissen, M. & Aguzzi, A. Extraneural pathologic prion protein in sporadic Creutzfeldt–Jakob disease. N. Engl. J. Med. 349, 1812–1820 (2003).

    CAS  PubMed  Google Scholar 

  8. Zerr, I. Therapeutic trials in human transmissible spongiform encephalopathies: recent advances and problems to address. Infect. Disord. Drug Targets 9, 92–99 (2009).

    CAS  PubMed  Google Scholar 

  9. Dormont, D. Approaches to prophylaxis and therapy. Br. Med. Bull. 66, 281–292 (2003).

    CAS  PubMed  Google Scholar 

  10. Brody, D. L. & Holtzman, D. M. Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci. 31, 175–193 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Oesch, B. et al. A cellular gene encodes scrapie PrP 27–30 protein. Cell 40, 735–746 (1985).

    CAS  PubMed  Google Scholar 

  12. Kretzschmar, H. A., Prusiner, S. B., Stowring, L. E. & DeArmond, S. J. Scrapie prion proteins are synthesized in neurons. Am. J. Pathol. 122, 1–5 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Harris, D. A. Cellular biology of prion diseases. Clin. Microbiol. Rev. 12, 429–444 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bueler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    CAS  PubMed  Google Scholar 

  15. Tobler, I. et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380, 639–642 (1996).

    CAS  PubMed  Google Scholar 

  16. Colling, S. B., Khana, M., Collinge, J. & Jefferys, J. G. Mossy fibre reorganization in the hippocampus of prion protein null mice. Brain Res. 755, 28–35 (1997).

    CAS  PubMed  Google Scholar 

  17. Forloni, G. et al. A neurotoxic prion protein fragment induces rat astroglial proliferation and hypertrophy. Eur. J. Neurosci. 6, 1415–1422 (1994).

    CAS  PubMed  Google Scholar 

  18. Whatley, S. A. et al. Regulation of intracellular free calcium levels by the cellular prion protein. Neuroreport 6, 2333–2337 (1995).

    CAS  PubMed  Google Scholar 

  19. Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. & Kretzschmar, H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112 (1997).

    CAS  PubMed  Google Scholar 

  20. Brown, D. R. & Mohn, C. M. Astrocytic glutamate uptake and prion protein expression. Glia 25, 282–292 (1999).

    CAS  PubMed  Google Scholar 

  21. Mouillet-Richard, S. et al. Signal transduction through prion protein. Science 289, 1925–1928 (2000).

    CAS  PubMed  Google Scholar 

  22. Weise, J. et al. Upregulation of cellular prion protein (PrPc) after focal cerebral ischemia and influence of lesion severity. Neurosci. Lett. 372, 146–150 (2004).

    CAS  PubMed  Google Scholar 

  23. Weise, J. et al. Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 37, 1296–1300 (2006).

    CAS  PubMed  Google Scholar 

  24. Hoshino, S. et al. Prions prevent brain damage after experimental brain injury: a preliminary report. Acta Neurochir. Suppl. 86, 297–299 (2003).

    CAS  PubMed  Google Scholar 

  25. Schmitt-Ulms, G. et al. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 314, 1209–1225 (2001).

    CAS  PubMed  Google Scholar 

  26. Spielhaupter, C. & Schatzl, H. M. PrPC directly interacts with proteins involved in signaling pathways. J. Biol. Chem. 276, 44604–44612 (2001).

    CAS  PubMed  Google Scholar 

  27. Kurschner, C. & Morgan, J. I. Analysis of interaction sites in homo- and heteromeric complexes containing Bcl-2 family members and the cellular prion protein. Brain Res. Mol. Brain Res. 37, 249–258 (1996).

    CAS  PubMed  Google Scholar 

  28. Chiarini, L. B. et al. Cellular prion protein transduces neuroprotective signals. EMBO J. 21, 3317–3326 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, S., Mange, A., Dong, L., Lehmann, S. & Schachner, M. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol. Cell. Neurosci. 22, 227–233 (2003).

    CAS  PubMed  Google Scholar 

  30. Lopes, M. H. et al. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J. Neurosci. 25, 11330–11339 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vassallo, N. et al. Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem Biophys. Res. Commun. 332, 75–82 (2005).

    CAS  PubMed  Google Scholar 

  32. Skovronsky, D. M., Lee, V. M. & Trojanowski, J. Q. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. 1, 151–170 (2006).

    CAS  PubMed  Google Scholar 

  33. Parkin, E. T. et al. Cellular prion protein regulates β-secretase cleavage of the Alzheimer's amyloid precursor protein. Proc. Natl Acad. Sci. USA 104, 11062–11067 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cisse, M. & Mucke, L. Alzheimer's disease: a prion protein connection. Nature 457, 1090–1091 (2009).

    CAS  PubMed  Google Scholar 

  35. Kellett, K. A. & Hooper, N. M. Prion protein and Alzheimer disease. Prion 3, 190–194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, V., Chuang, T. C., Soong, B. W., Shan, D. E. & Kao, M. C. Octarepeat changes of prion protein in Parkinson's disease. Parkinsonism Relat. Disord. 15, 53–58 (2009).

    CAS  PubMed  Google Scholar 

  37. Heppner, F. L. et al. Transepithelial prion transport by M cells. Nat. Med. 7, 976–977 (2001).

    CAS  PubMed  Google Scholar 

  38. Aguzzi, A. & Sigurdson, C. J. Antiprion immunotherapy: to suppress or to stimulate? Nat. Rev. Immunol. 4, 725–736 (2004).

    CAS  PubMed  Google Scholar 

  39. Daude, N. Prion diseases and the spleen. Viral Immunol. 17, 334–349 (2004).

    CAS  PubMed  Google Scholar 

  40. Kimberlin, R. H. & Walker, C. A. The role of the spleen in the neuroinvasion of scrapie in mice. Virus Res. 12, 201–211 (1989).

    CAS  PubMed  Google Scholar 

  41. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    CAS  PubMed  Google Scholar 

  42. Klein, M. A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690 (1997).

    CAS  PubMed  Google Scholar 

  43. Klein, M. A. et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nat. Med. 4, 1429–1433 (1998).

    CAS  PubMed  Google Scholar 

  44. Mabbott, N. A. et al. Tumor necrosis factor alpha-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J. Virol. 74, 3338–3344 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Aguzzi, A. et al. Immune system and peripheral nerves in propagation of prions to CNS. Br. Med. Bull. 66, 141–159 (2003).

    CAS  PubMed  Google Scholar 

  46. Nicotera, P. A route for prion neuroinvasion. Neuron 31, 345–348 (2001).

    CAS  PubMed  Google Scholar 

  47. Glatzel, M., Heppner, F. L., Albers, K. M. & Aguzzi, A. Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31, 25–34 (2001).

    CAS  PubMed  Google Scholar 

  48. Prinz, M. et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425, 957–962 (2003).

    CAS  PubMed  Google Scholar 

  49. Aguzzi, A. & Zhu, C. Five questions on prion diseases. PLoS Pathog. 8, e1002651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vella, L. J., Sharples, R. A., Nisbet, R. M., Cappai, R. & Hill, A. F. The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur. Biophys. J. 37, 323–332 (2008).

    CAS  PubMed  Google Scholar 

  51. Vella, L. J. & Hill, A. F. Generation of cell lines propagating infectious prions and the isolation and characterization of cell-derived exosomes. Methods Mol. Biol. 459, 69–82 (2008).

    CAS  PubMed  Google Scholar 

  52. Leblanc, P. et al. Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J. 25, 2674–2685 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Alais, S. et al. Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol. Cell 100, 603–615 (2008).

    CAS  PubMed  Google Scholar 

  54. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    CAS  PubMed  Google Scholar 

  55. Morgan, D. et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    CAS  PubMed  Google Scholar 

  56. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919 (2000).

    CAS  PubMed  Google Scholar 

  57. Porter, D. D., Porter, H. G. & Cox, N. A. Failure to demonstrate a humoral immune response to scrapie infection in mice. J. Immunol. 111, 1407–1410 (1973).

    CAS  PubMed  Google Scholar 

  58. Kasper, K. C., Stites, D. P., Bowman, K. A., Panitch, H. & Prusiner, S. B. Immunological studies of scrapie infection. J. Neuroimmunol. 3, 187–201 (1982).

    CAS  PubMed  Google Scholar 

  59. Aucouturier, P. & Carnaud, C. The immune system and prion diseases: a relationship of complicity and blindness. J. Leukoc. Biol. 72, 1075–1083 (2002).

    CAS  PubMed  Google Scholar 

  60. Spinner, D. S. et al. CpG oligodeoxynucleotide-enhanced humoral immune response and production of antibodies to prion protein PrPSc in mice immunized with 139A scrapie-associated fibrils. J. Leukoc. Biol. 81, 1374–1385 (2007).

    CAS  PubMed  Google Scholar 

  61. Polymenidou, M. et al. Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection. Proc. Natl Acad. Sci. USA 101 (Suppl. 2), 14670–14676 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Krasemann, S., Groschup, M. H., Harmeyer, S., Hunsmann, G. & Bodemer, W. Generation of monoclonal antibodies against human prion proteins in PrP0/0 mice. Mol. Med. 2, 725–734 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Demart, S. et al. New insight into abnormal prion protein using monoclonal antibodies. Biochem. Biophys. Res. Commun. 265, 652–657 (1999).

    CAS  PubMed  Google Scholar 

  64. Bainbridge, J. & Walker, B. Cell mediated immune responses against human prion protein. Clin. Exp. Immunol. 133, 310–317 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gregoire, S. et al. Identification of two immunogenic domains of the prion protein--PrP--which activate class II-restricted T cells and elicit antibody responses against the native molecule. J. Leukoc. Biol. 76, 125–134 (2004).

    CAS  PubMed  Google Scholar 

  66. Kim, C. L. et al. Antigenic characterization of an abnormal isoform of prion protein using a new diverse panel of monoclonal antibodies. Virology 320, 40–51 (2004).

    CAS  PubMed  Google Scholar 

  67. Khalili-Shirazi, A. et al. Protein conformation significantly influences immune responses to prion protein. J. Immunol. 174, 3256–3263 (2005).

    CAS  PubMed  Google Scholar 

  68. Nakamura, N. et al. Generation of antibodies against prion protein by scrapie-infected cell immunization of PrP0 mice. Hybrid Hybridomics 22, 263–266 (2003).

    CAS  PubMed  Google Scholar 

  69. Trevitt, C. R. & Collinge, J. A systematic review of prion therapeutics in experimental models. Brain 129, 2241–2265 (2006).

    PubMed  Google Scholar 

  70. Muller-Schiffmann, A. & Korth, C. Vaccine approaches to prevent and treat prion infection: progress and challenges. BioDrugs 22, 45–52 (2008).

    PubMed  Google Scholar 

  71. Arbel, M., Lavie, V. & Solomon, B. Generation of antibodies against prion protein in wild-type mice via helix 1 peptide immunization. J. Neuroimmunol. 144, 38–45 (2003).

    CAS  PubMed  Google Scholar 

  72. Bainbridge, J., Jones, N. & Walker, B. Multiple antigenic peptides facilitate generation of anti-prion antibodies. Clin. Exp. Immunol. 137, 298–304 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Souan, L. et al. Modulation of proteinase-K resistant prion protein by prion peptide immunization. Eur. J. Immunol. 31, 2338–2346 (2001).

    CAS  PubMed  Google Scholar 

  74. Schwarz, A. et al. Immunisation with a synthetic prion protein-derived peptide prolongs survival times of mice orally exposed to the scrapie agent. Neurosci. Lett. 350, 187–189 (2003).

    CAS  PubMed  Google Scholar 

  75. Bachy, V. et al. Mouse vaccination with dendritic cells loaded with prion protein peptides overcomes tolerance and delays scrapie. J. Gen. Virol. 91, 809–820 (2010).

    CAS  PubMed  Google Scholar 

  76. Koller, M. F., Grau, T. & Christen, P. Induction of antibodies against murine full-length prion protein in wild-type mice. J. Neuroimmunol. 132, 113–116 (2002).

    CAS  PubMed  Google Scholar 

  77. Sigurdsson, E. M. et al. Immunization delays the onset of prion disease in mice. Am. J. Pathol. 161, 13–17 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ishibashi, D. et al. Immunization with recombinant bovine but not mouse prion protein delays the onset of disease in mice inoculated with a mouse-adapted prion. Vaccine 25, 985–992 (2007).

    CAS  PubMed  Google Scholar 

  79. Tayebi, M., Collinge, J. & Hawke, S. Unswitched immunoglobulin M response prolongs mouse survival in prion disease. J. Gen. Virol. 90, 777–782 (2009).

    CAS  PubMed  Google Scholar 

  80. Ishibashi, D. et al. Antigenic mimicry-mediated anti-prion effects induced by bacterial enzyme succinylarginine dihydrolase in mice. Vaccine 29, 9321–9328 (2011).

    CAS  PubMed  Google Scholar 

  81. Rosset, M. B. et al. Dendritic cell-mediated-immunization with xenogenic PrP and adenoviral vectors breaks tolerance and prolongs mice survival against experimental scrapie. PLoS ONE 4, e4917 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Bade, S., Baier, M., Boetel, T. & Frey, A. Intranasal immunization of Balb/c mice against prion protein attenuates orally acquired transmissible spongiform encephalopathy. Vaccine 24, 1242–1253 (2006).

    CAS  PubMed  Google Scholar 

  83. Goni, F. et al. High titers of mucosal and systemic anti-PrP antibodies abrogate oral prion infection in mucosal-vaccinated mice. Neuroscience 153, 679–686 (2008).

    CAS  PubMed  Google Scholar 

  84. Bayer, A. J. et al. Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 64, 94–101 (2005).

    CAS  PubMed  Google Scholar 

  85. Schenk, D. Amyloid-β immunotherapy for Alzheimer's disease: the end of the beginning. Nat. Rev. Neurosci. 3, 824–828 (2002).

    CAS  PubMed  Google Scholar 

  86. Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004).

    CAS  PubMed  Google Scholar 

  87. Klohn, P. C. et al. PrP antibodies do not trigger mouse hippocampal neuron apoptosis. Science 335, 52 (2012).

    PubMed  Google Scholar 

  88. Heppner, F. L. et al. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294, 178–182 (2001).

    CAS  PubMed  Google Scholar 

  89. Sigurdsson, E. M. et al. Anti-prion antibodies for prophylaxis following prion exposure in mice. Neurosci. Lett. 336, 185–187 (2003).

    CAS  PubMed  Google Scholar 

  90. White, A. R. et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422, 80–83 (2003).

    CAS  PubMed  Google Scholar 

  91. Sadowski, M. J. et al. Anti-PrP Mab 6D11 suppresses PrPSc replication in prion infected myeloid precursor line FDC-P1/22L and in the lymphoreticular system in vivo. Neurobiol. Dis. 34, 267–278 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zuber, C. et al. Anti-LRP/LR antibody W3 hampers peripheral PrPSc propagation in scrapie infected mice. Prion 1, 207–212 (2007).

    PubMed  PubMed Central  Google Scholar 

  93. Gauczynski, S. et al. The 37-kDa/67-kDa laminin receptor acts as a receptor for infectious prions and is inhibited by polysulfated glycanes. J. Infect. Dis. 194, 702–709 (2006).

    CAS  PubMed  Google Scholar 

  94. Gauczynski, S. et al. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20, 5863–5875 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Leucht, C. et al. The 37 kDa/67 kDa laminin receptor is required for PrPSc propagation in scrapie-infected neuronal cells. EMBO Rep. 4, 290–295 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zuber, C. et al. Single chain Fv antibodies directed against the 37 kDa/67 kDa laminin receptor as therapeutic tools in prion diseases. Mol. Immunol. 45, 144–151 (2008).

    CAS  PubMed  Google Scholar 

  97. Wei, X. et al. Human anti-prion antibodies block prion peptide fibril formation and neurotoxicity. J. Biol. Chem. 287, 12858–12866 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kellner, A. et al. Autoantibodies against β-amyloid are common in Alzheimer's disease and control plaque burden. Ann. Neurol. 65, 24–31 (2009).

    PubMed  Google Scholar 

  99. Dodel, R. C. et al. Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 75, 1472–1474 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Relkin, N. R. et al. 18-month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol. Aging 30, 1728–1736 (2009).

    CAS  PubMed  Google Scholar 

  101. Dorban, G., Defaweux, V., Heinen, E. & Antoine, N. Spreading of prions from the immune to the peripheral nervous system: a potential implication of dendritic cells. Histochem. Cell Biol. 133, 493–504 (2010).

    CAS  PubMed  Google Scholar 

  102. Du, Y. et al. Human anti-β-amyloid antibodies block β-amyloid fibril formation and prevent β-amyloid-induced neurotoxicity. Brain 126, 1935–1939 (2003).

    PubMed  Google Scholar 

  103. Dodel, R. et al. Naturally occurring autoantibodies against β-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer's disease. J. Neurosci. 31, 5847–5854 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant of the University Medical Center Giessen and Marburg. Y. Roettger received a research grant from the Competence network Degenerative Dementias, funded by the German Ministry of Education and Research (BMBF, 01GI1008C). The article was edited for language errors by editors from American Journal Experts.

Author information

Authors and Affiliations

Authors

Contributions

Y. Roettger, J.-P. Bach and R. Dodel researched the data for the article. Y. Roettger, Y. Du, M. Bacher, I. Zerr, R. Dodel and J.-P. Bach provided substantial contributions to discussion of the content, review and/or editing of the manuscript before submission. Y. Roettger and J.-P. Bach wrote the article.

Corresponding author

Correspondence to Richard Dodel.

Ethics declarations

Competing interests

M. Bacher, R. Dodel and J.-P. Bach hold patent applications 20090028869 and 2366714 A1. J.-P. Bach has received research grants from Grifols and Baxter. In addition, he has received lecturing fees from Teva Pharmaceuticals. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roettger, Y., Du, Y., Bacher, M. et al. Immunotherapy in prion disease. Nat Rev Neurol 9, 98–105 (2013). https://doi.org/10.1038/nrneurol.2012.258

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing