Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cell-to-cell transmission of non-prion protein aggregates

A Correction to this article was published on 10 January 2011

Abstract

Neurodegenerative disorders such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and Creutzfeldt–Jakob disease (CJD) are characterized by progressive accumulation of protein aggregates in selected brain regions. Protein misfolding and templated assembly into aggregates might result from an imbalance between protein synthesis, aggregation and clearance. Although protein misfolding and aggregation occur in most neurodegenerative disorders, the concept of spreading and infectivity of aggregates in the CNS has, until now, been confined to prion diseases such as CJD and bovine spongiform encephalopathy. Emerging evidence, however, suggests that prion-like spreading, involving secreted proteins such as amyloid-β and cytosolic proteins such as tau, huntingtin and α-synuclein, can occur in other neurodegenerative disorders. The underlying molecular mechanisms and the therapeutic implications of the new data are discussed in this article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aggregate clearing, seed formation and aggregate burden.
Figure 2: Models of cell-to-cell transmission of misfolded and aggregated proteins.

Similar content being viewed by others

References

  1. Forman, M. S., Trojanowski, J. Q. & Lee, V. M. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 10, 1055–1063 (2004).

    Article  CAS  Google Scholar 

  2. Lansbury, P. T. & Lashuel, H. A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006).

    Article  CAS  Google Scholar 

  3. Glabe, C. G. Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283, 29639–29643 (2008).

    Article  CAS  Google Scholar 

  4. Tsigelny, I. F. et al. Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases. PLoS ONE 3, e3135 (2008).

    Article  Google Scholar 

  5. Aguzzi, A., Baumann, F. & Bremer, J. The prion's elusive reason for being. Annu. Rev. Neurosci. 31, 439–477 (2008).

    Article  CAS  Google Scholar 

  6. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  Google Scholar 

  7. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  Google Scholar 

  8. Solomon, A. et al. Amyloidogenic potential of foie gras. Proc. Natl Acad. Sci. USA 104, 10998–11001 (2007).

    Article  CAS  Google Scholar 

  9. Sponarova, J., Nystrom, S. N. & Westermark, G. T. AA-amyloidosis can be transferred by peripheral blood monocytes. PLoS ONE 3, e3308 (2008).

    Article  Google Scholar 

  10. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 10 (Suppl.), S10–S17 (2004).

    Article  Google Scholar 

  11. Jarrett, J. T. & Lansbury, P. T. Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  12. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  Google Scholar 

  13. Yonetani, M. et al. Conversion of wild-type α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J. Biol. Chem. 284, 7940–7950 (2009).

    Article  CAS  Google Scholar 

  14. Frost, B., Ollesch, J., Wille, H. & Diamond, M. I. Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J. Biol. Chem. 284, 3546–3551 (2009).

    Article  CAS  Google Scholar 

  15. Frost, B., Jacks, R. L. & Diamond, M. I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284, 12845–12852 (2009).

    Article  CAS  Google Scholar 

  16. Ren, P. H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 11, 219–225 (2009).

    Article  CAS  Google Scholar 

  17. Luk, K. C. et al. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl Acad. Sci. USA 106, 20051–20056 (2009).

    Article  CAS  Google Scholar 

  18. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  Google Scholar 

  19. Kotzbauer, P. T. et al. Fibrillization of α-synuclein and tau in familial Parkinson's disease caused by the A53T α-synuclein mutation. Exp. Neurol. 187, 279–288 (2004).

    Article  CAS  Google Scholar 

  20. Morales, R. et al. Molecular cross talk between misfolded proteins in animal models of Alzheimer's and prion diseases. J. Neurosci. 30, 4528–4535 (2010).

    Article  CAS  Google Scholar 

  21. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  Google Scholar 

  22. Lee, H. J., Patel, S. & Lee, S. J. Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25, 6016–6024 (2005).

    Article  CAS  Google Scholar 

  23. El-Agnaf, O. M. et al. Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson's disease. FASEB J. 20, 419–425 (2006).

    Article  CAS  Google Scholar 

  24. Vandermeeren, M. et al. Detection of tau proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J. Neurochem. 61, 1828–1834 (1993).

    Article  CAS  Google Scholar 

  25. Lee, H. J. et al. Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int. J. Biochem. Cell Biol. 40, 1835–1849 (2008).

    Article  CAS  Google Scholar 

  26. Hu, X. et al. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc. Natl Acad. Sci. USA 106, 20324–20329 (2009).

    Article  CAS  Google Scholar 

  27. Fevrier, B. et al. Cells release prions in association with exosomes. Proc. Natl Acad. Sci. USA 101, 9683–9688 (2004).

    Article  CAS  Google Scholar 

  28. Gousset, K. et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11, 328–336 (2009).

    Article  CAS  Google Scholar 

  29. Legname, G. et al. Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc. Natl Acad. Sci. USA 103, 19105–19110 (2006).

    Article  CAS  Google Scholar 

  30. Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48, 913–922 (2005).

    Article  CAS  Google Scholar 

  31. Fortin, D. L. et al. Neural activity controls the synaptic accumulation of α-synuclein. J. Neurosci. 25, 10913–10921 (2005).

    Article  CAS  Google Scholar 

  32. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  CAS  Google Scholar 

  33. Caughey, B. & Baron, G. S. Prions and their partners in crime. Nature 443, 803–810 (2006).

    Article  CAS  Google Scholar 

  34. Eisele, Y. S. et al. Induction of cerebral β-amyloidosis: intracerebral versus systemic Aβ inoculation. Proc. Natl Acad. Sci. USA 106, 12926–12931 (2009).

    Article  CAS  Google Scholar 

  35. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

    Article  CAS  Google Scholar 

  36. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    Article  CAS  Google Scholar 

  37. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14, 504–506 (2008).

    Article  CAS  Google Scholar 

  38. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article  CAS  Google Scholar 

  39. Mendez, I. et al. Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years. Nat. Med. 14, 507–509 (2008).

    Article  CAS  Google Scholar 

  40. Brody, D. L. & Holtzman, D. M. Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci. 31, 175–193 (2008).

    Article  CAS  Google Scholar 

  41. Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat. Med. 9, 453–457 (2003).

    Article  CAS  Google Scholar 

  42. Martinez-Vicente, M. & Cuervo, A. M. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 6, 352–361 (2007).

    Article  CAS  Google Scholar 

  43. Bahr, B. A. & Bendiske, J. The neuropathogenic contributions of lysosomal dysfunction. J. Neurochem. 83, 481–489 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Changyoun Kim for assistance with illustrations. This work was supported by NIH grants AG18440, AG022074, AG11385 and AG10435, by the Disease Network Research Program (20090084180) from the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Republic of Korea, and by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (20090083737). S.-J. Lee is supported by the mid-career research program (2010-0015188) through an NRF grant funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

S.-J. Lee, C. Sigurdson, I. Tsigelny and E. Masliah researched the data for the article. All authors contributed substantially to discussions of the content. S.-J. Lee, P. Desplats and E. Masliah contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Eliezer Masliah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Desplats, P., Sigurdson, C. et al. Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 6, 702–706 (2010). https://doi.org/10.1038/nrneurol.2010.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing