Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles of GluN3-containing NMDA receptors in the CNS

Key Points

  • GluN3 subunits (A and B) were the last members of the glutamate receptor subunit family to be cloned. They assemble with GluN1 and GluN2 (A–D) subunits to form tri-heteromeric NMDA receptors (NMDARs). NMDARs containing the GluN3A subunit seem to counteract some of the well-known functions of classical NMDARs (GluN1–GluN2 di-heteromers) in long-term plasticity and synapse development.

  • GluN3A-containing NMDARs are expressed during a narrow temporal window of early postnatal development and have been proposed to play a part in controlling the timing and extent of neural circuit refinements by acting as a 'brake' to prevent the premature strengthening and stabilization of subsets of excitatory synapses. Interactions of the carboxy-terminal domain of GluN3A with a unique set of intracellular partners are required for this function. In addition, GluN3A-containing NMDARs are much less permeable to Ca2+ ions and relatively insensitive to voltage-dependent block by Mg2+ compared with classical NMDARs.

  • GluN3-containing NMDARs might also influence oligodendrocyte maturation and regulate forms of plasticity that are mediated by presynaptic NMDARs.

  • Expression of GluN3A is reactivated in a number of neurological diseases, and emerging evidence suggests a major pathophysiological role of GluN3A in some of them, including Huntington disease, addiction and white matter damage.

  • The therapeutic potential of targeting GluN3A-containing NMDARs or intracellular regulators of their trafficking or signalling is just beginning to be explored but might provide a rational alternative to previously attempted therapies that targeted the more ubiquitous GluN1 or GluN2 subunits.

  • GluN3 subunits can assemble with only GluN1 subunits in heterologous cells to form surface-expressed di-heteromeric receptors that do not bind glutamate and function as excitatory glycine receptors, but the physiological significance of this function is not known.

Abstract

GluN3-containing NMDA receptors (GluN3-NMDARs) are rarer than the 'classical' NMDARs, which are composed solely of GluN1 and GluN2 subunits, and have non-conventional biophysical, trafficking and signalling properties. In the CNS, they seem to have important roles in delaying synapse maturation until the arrival of sensory experience and in targeting non-used synapses for pruning. The reactivation of GluN3A expression at inappropriate ages may underlie maladaptive synaptic rearrangements observed in addiction, neurodegenerative diseases and other major brain disorders. Here, we discuss current evidence for these and other emerging roles for GluN3-NMDARs in the physiology and pathology of the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties, distribution and expression pattern of GluN3A-NMDARs.
Figure 2: GluN3A-NMDARs in synapse plasticity and maturation.
Figure 3: Activity-dependent regulation of GluN3A-NMDARs and synapse fate.
Figure 4: Signalling pathways mediating the effects of GluN3A-NMDARs.

Similar content being viewed by others

References

  1. Paoletti, P., Bellone, C. & Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Lau, C. G. & Zukin, R. S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8, 413–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Malenka, R. C. & Nicoll, R. A. Long-term potentiation--a decade of progress? Science 285, 1870–1874 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Eriksson, M. et al. Cloning and expression of the human N-methyl-d-aspartate receptor subunit NR3A. Neurosci. Lett. 321, 177–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Sucher, N. J. et al. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J. Neurosci. 15, 6509–6520 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ciabarra, A. M. et al. Cloning and characterization of χ-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J. Neurosci. 15, 6498–6508 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andersson, O., Stenqvist, A., Attersand, A. & von Euler, G. Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics 78, 178–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, L., Margolis, F. L., Shipley, M. T. & Lidow, M. S. Identification of a long variant of mRNA encoding the NR3 subunit of the NMDA receptor: its regional distribution and developmental expression in the rat brain. FEBS Lett. 441, 392–396 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Domingues, A. M., Neugebauer, K. M. & Fern, R. Identification of four functional NR3B isoforms in developing white matter reveals unexpected diversity among glutamate receptors. J. Neurochem. 117, 449–460 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Chatterton, J. E. et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415, 793–798 (2002). This is the first study to show that GluN1–GluN3 complexes behave as excitatory glycine-gated receptors.

    Article  CAS  PubMed  Google Scholar 

  13. Nishi, M., Hinds, H., Lu, H. P., Kawata, M. & Hayashi, Y. Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J. Neurosci. 21, RC185 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pérez-Otaño, I. et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J. Neurosci. 21, 1228–1237 (2001). This paper reports the determinants for subunit assembly and forward trafficking of GluN3A-NMDARs.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Matsuda, K., Fletcher, M., Kamiya, Y. & Yuzaki, M. Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J. Neurosci. 23, 10064–10073 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Das, S. et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393, 377–381 (1998). This paper shows that lack of GluN3A leads to larger NMDAR currents and increases synapse density and size.

    Article  CAS  PubMed  Google Scholar 

  17. Sasaki, Y. F. et al. Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J. Neurophysiol. 87, 2052–2063 (2002). References 14, 16 and 17 describe the atypical biophysical properties of GluN3A-NMDARs.

    Article  CAS  PubMed  Google Scholar 

  18. Tong, G. et al. Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons. J. Neurophysiol. 99, 122–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Roberts, A. C. et al. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron 63, 342–356 (2009). This study shows that prolonging juvenile levels of GluN3A into adulthood impairs synaptic connectivity and alters fundamental aspects of cognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burzomato, V., Frugier, G., Pérez-Otaño, I., Kittler, J. T. & Attwell, D. The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J. Physiol. 588, 3403–3414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pachernegg, S., Strutz-Seebohm, N. & Hollmann, M. GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 35, 240–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Martinez-Turrillas, R. et al. The NMDA receptor subunit GluN3A protects against 3-nitroproprionic-induced striatal lesions via inhibition of calpain activation. Neurobiol. Dis. 48, 290–298 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Al-Hallaq, R. A. et al. Association of NR3A with the N-methyl-d-aspartate receptor NR1 and NR2 subunits. Mol. Pharmacol. 62, 1119–1127 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Nilsson, A. et al. Analysis of NR3A receptor subunits in human native NMDA receptors. Brain Res. 1186, 102–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Hansen, K. B., Ogden, K. K., Yuan, H. & Traynelis, S. F. Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81, 1084–1096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stroebel, D., Carvalho, S., Grand, T., Zhu, S. & Paoletti, P. Controlling NMDA receptor subunit composition using ectopic retention signals. J. Neurosci. 34, 16630–16636 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. McClymont, D. W., Harris, J. & Mellor, I. R. Open-channel blockade is less effective on GluN3B than GluN3A subunit-containing NMDA receptors. Eur. J. Pharmacol. 686, 22–31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cavara, N. A. & Hollmann, M. Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol. Neurobiol. 38, 16–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Low, C. M. & Wee, K. S. New insights into the not-so-new NR3 subunits of N-methyl-d-aspartate receptor: localization, structure, and function. Mol. Pharmacol. 78, 1–11 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Kehoe, L. A., Bernardinelli, Y. & Muller, D. GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast. 2013, 145387 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Smothers, C. T. & Woodward, J. J. Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits. J. Pharmacol. Exp. Ther. 322, 739–748 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Cummings, K. A. & Popescu, G. K. Protons potentiate GluN1/GluN3A currents by attenuating their desensitisation. Sci. Rep. 6, 23344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pina-Crespo, J. C. et al. Excitatory glycine responses of CNS myelin mediated by NR1/NR3 “NMDA” receptor subunits. J. Neurosci. 30, 11501–11505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smothers, C. T. & Woodward, J. J. Effect of the NR3 subunit on ethanol inhibition of recombinant NMDA receptors. Brain Res. 987, 117–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Yao, Y. & Mayer, M. L. Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J. Neurosci. 26, 4559–4566 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yao, Y., Harrison, C. B., Freddolino, P. L., Schulten, K. & Mayer, M. L. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J. 27, 2158–2170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yao, Y., Belcher, J., Berger, A. J., Mayer, M. L. & Lau, A. Y. Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics. Structure 21, 1788–1799 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kvist, T., Greenwood, J. R., Hansen, K. B., Traynelis, S. F. & Brauner-Osborne, H. Structure-based discovery of antagonists for GluN3-containing N-methyl-d-aspartate receptors. Neuropharmacology 75, 324–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Henson, M. A., Roberts, A. C., Pérez-Otaño, I. & Philpot, B. D. Influence of the NR3A subunit on NMDA receptor functions. Prog. Neurobiol. 91, 23–37 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sucher, N. J. et al. N-Methyl-d-aspartate receptor subunit NR3A in the retina: developmental expression, cellular localization, and functional aspects. Invest. Ophthalmol. Vis. Sci. 44, 4451–4456 (2003).

    Article  PubMed  Google Scholar 

  41. Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wee, K. S., Zhang, Y., Khanna, S. & Low, C. M. Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. J. Comp. Neurol. 509, 118–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Wong, H. K. et al. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J. Comp. Neurol. 450, 303–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Larsen, R. S. et al. Synapse-specific control of experience-dependent plasticity by presynaptic NMDA receptors. Neuron 83, 879–893 (2014). This paper reports that visual experience suppresses a presynaptic NMDAR form of t-LTD at synapses between neurons in visual cortex layer 4 and those in layer2/3 by downregulating GluN3A-NMDARs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ishihama, K. & Turman, J. E. Jr. NR3 protein expression in trigeminal neurons during postnatal development. Brain Res. 1095, 12–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Wee, K. S., Tan, F. C., Cheong, Y. P., Khanna, S. & Low, C. M. Ontogenic profile and synaptic distribution of GluN3 proteins in the rat brain and hippocampal neurons. Neurochem. Res. 41, 290–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Pérez-Otaño, I. et al. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat. Neurosci. 9, 611–621 (2006). This article identifies a biological mechanism underlying the downregulation of GluN3A-NMDARs in synapses that involves the recruitment of PACSIN1, a selective endocytic adaptor. It additionally reports activity dependence of GluN3A endocytosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Racca, C., Stephenson, F. A., Streit, P., Roberts, J. D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bard, L. et al. Dynamic and specific interaction between synaptic NR2-NMDA receptor and PDZ proteins. Proc. Natl Acad. Sci. USA 107, 19561–19566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eriksson, M. et al. On the role of NR3A in human NMDA receptors. Physiol. Behav. 92, 54–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Henson, M. A. et al. Genetic deletion of NR3A accelerates glutamatergic synapse maturation. PLoS ONE 7, e42327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pérez-Otaño, I. & Ehlers, M. D. Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13, 175–189 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. Rogge, G. A., Singh, H., Dang, R. & Wood, M. A. HDAC3 is a negative regulator of cocaine-context-associated memory formation. J. Neurosci. 33, 6623–6632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodenas-Ruano, A., Chávez, A. E., Cossio, M. J., Castillo, P. E. & Zukin, R. S. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat. Neurosci. 15, 1382–1390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wee, K. S., Wee, Z. N., Chow, N. B. & Low, C. M. The distal carboxyl terminal of rat NR3B subunit regulates NR1-1a/NR3B and NR1-2a/NR3B surface trafficking. Neurochem. Int. 57, 97–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Chowdhury, D. et al. Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors. J. Neurosci. 33, 4151–4164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Holtmaat, A. J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N. & Goldman-Rakic, P. S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Zuo, Y., Lin, A., Chang, P. & Gan, W. B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Gambrill, A. C. & Barria, A. NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc. Natl Acad. Sci. USA 108, 5855–5860 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adesnik, H., Li, G., During, M. J., Pleasure, S. J. & Nicoll, R. A. NMDA receptors inhibit synapse unsilencing during brain development. Proc. Natl Acad. Sci. USA 105, 5597–5602 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Bellone, C. & Nicoll, R. A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55, 779–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Philpot, B. D., Sekhar, A. K., Shouval, H. Z. & Bear, M. F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Nagerl, U. V., Eberhorn, N., Cambridge, S. B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759–767 (2004).

    Article  PubMed  Google Scholar 

  66. Marco, S. et al. Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nat. Med. 19, 1030–1038 (2013). This study demonstrates a causal relationship between dysregulation of a key pathway for endocytic trafficking of GluN3A and aberrant synapse pruning in Huntington disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kehoe, L. A. et al. GluN3A promotes dendritic spine pruning and destabilization during postnatal development. J. Neurosci. 34, 9213–9221 (2014). This paper describes a role for GluN3A in promoting synapse destabilization and elimination in hippocampal organotypic slices.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sanes, J. R. & Lichtman, J. W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2, 791–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Brody, S. A., Nakanishi, N., Tu, S., Lipton, S. A. & Geyer, M. A. A developmental influence of the N-methyl-D-aspartate receptor NR3A subunit on prepulse inhibition of startle. Biol. Psychiatry 57, 1147–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Mohamad, O., Song, M. K., Wei, L. & Yu, S. P. Regulatory roles of the NMDA receptor GluN3A subunit in locomotion, pain perception and cognitive functions in adult mice. J. Physiol. 591, 149–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Bastrikova, N., Gardner, G. A., Reece, J. M., Jeromin, A. & Dudek, S. M. Synapse elimination accompanies functional plasticity in hippocampal neurons. Proc. Natl Acad. Sci. USA 105, 3123–3127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fiuza, M., González-González, I. & Pérez-Otaño, I. GluN3A expression restricts spine maturation via inhibition of GIT1/Rac1 signaling. Proc. Natl Acad. Sci. USA 110, 20807–20812 (2013). This paper reports an inhibitory role of GluN3A-NMDARs on spine rearrangements by diminishing the activation of the RAC1–PAK pathway in dendritic spines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sucher, N. J. et al. Association of the small GTPase Rheb with the NMDA receptor subunit NR3A. Neurosignals 18, 203–209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chan, S. F. & Sucher, N. J. An NMDA receptor signaling complex with protein phosphatase 2A. J. Neurosci. 21, 7985–7992 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tang, G. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83, 1131–1143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, E., Knutzen, C. A., Krauss, S., Schweiger, S. & Chiang, G. G. Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proc. Natl Acad. Sci. USA 108, 8680–8685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eriksson, M. et al. The NMDAR subunit NR3A interacts with microtubule-associated protein 1S in the brain. Biochem. Biophys. Res. Commun. 361, 127–132 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eriksson, M. et al. MAP1B binds to the NMDA receptor subunit NR3A and affects NR3A protein concentrations. Neurosci. Lett. 475, 33–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Larsen, R. S. et al. NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat. Neurosci. 14, 338–344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Berg, L. K., Larsson, M., Morland, C. & Gundersen, V. Pre- and postsynaptic localization of NMDA receptor subunits at hippocampal mossy fibre synapses. Neuroscience 230, 139–150 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Salter, M. G. & Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438, 1167–1171 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Karadottir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jantzie, L. L. et al. Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: potential mechanism of increased vulnerability in the immature brain. Cereb. Cortex 25, 482–495 (2015). References 81–83 report the presence of GluN3A subunits in myelin-forming oligodendrocytes.

    Article  PubMed  Google Scholar 

  84. Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Lundgaard, I. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013). This article shows that oligodendrocyte processes express GluN3A-NMDARs. It demonstrates that BDNF and neuregulin downregulate GluN3A levels in oligodendrocytes, favouring activity-dependent myelination. The findings support a role for GluN3A downregulation in 'adaptive myelination'.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Micu, I. et al. The molecular physiology of the axo-myelinic synapse. Exp. Neurol. 276, 41–50 (2015).

    Article  PubMed  CAS  Google Scholar 

  87. De Biase, L. M. et al. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J. Neurosci. 31, 12650–12662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yuan, T. et al. Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors. Neuron 80, 1025–1038 (2013). This paper identifies GluN3A as an unexpected player in synaptic adaptations triggered by cocaine.

    Article  CAS  PubMed  Google Scholar 

  89. Mueller, H. T. & Meador-Woodruff, J. H. NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr. Res. 71, 361–370 (2004).

    Article  PubMed  Google Scholar 

  90. Henson, M. A. et al. Developmental regulation of the NMDA receptor subunits, NR3A and NR1, in human prefrontal cortex. Cereb. Cortex 18, 2560–2573 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Glantz, L. A. & Lewis, D. A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Rao, J. S., Harry, G. J., Rapoport, S. I. & Kim, H. W. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol. Psychiatry 15, 384–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Shen, Y. C. et al. Exomic sequencing of the ionotropic glutamate receptor N-methyl-d-aspartate 3A gene (GRIN3A) reveals no association with schizophrenia. Schizophr. Res. 114, 25–32 (2009).

    Article  PubMed  Google Scholar 

  94. Takata, A. et al. A population-specific uncommon variant in GRIN3A associated with schizophrenia. Biol. Psychiatry 73, 532–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Gallinat, J. et al. Genetic variations of the NR3A subunit of the NMDA receptor modulate prefrontal cerebral activity in humans. J. Cogn. Neurosci. 19, 59–68 (2007).

    Article  PubMed  Google Scholar 

  96. Papenberg, G. et al. Dopamine and glutamate receptor genes interactively influence episodic memory in old age. Neurobiol. Aging 35, 1213.e3–1213.e8 (2014).

    Article  CAS  Google Scholar 

  97. Ohi, K. et al. Glutamate networks implicate cognitive impairments in schizophrenia: genome-wide association studies of 52 cognitive phenotypes. Schizophr. Bull. 41, 909–918 (2015).

    Article  PubMed  Google Scholar 

  98. Greenwood, T. A. et al. Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am. J. Psychiatry 168, 930–946 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Matsuno, H. et al. A naturally occurring null variant of the NMDA type glutamate receptor NR3B subunit is a risk factor of schizophrenia. PLoS ONE 10, e0116319 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Niemann, S. et al. Motoneuron-specific NR3B gene: no association with ALS and evidence for a common null allele. Neurology 70, 666–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Jin, Z. et al. Selective increases of AMPA, NMDA, and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics. Front. Cell. Neurosci. 8, 11 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Spanagel, R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol. Rev. 89, 649–705 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, J. et al. The contribution of rare and common variants in 30 genes to risk nicotine dependence. Mol. Psychiatry 20, 1467–1478 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Yuan, T. & Bellone, C. Glutamatergic receptors at developing synapses: the role of GluN3A-containing NMDA receptors and GluA2-lacking AMPA receptors. Eur. J. Pharmacol. 719, 107–111 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Wesseling, J. F. & Pérez-Otaño, I. Modulation of GluN3A expression in Huntington disease: a new N-methyl-d-aspartate receptor-based therapeutic approach? JAMA Neurol. 72, 468–473 (2015).

    Article  PubMed  Google Scholar 

  106. Mahfooz, K. et al. GluN3A promotes NMDA spiking by enhancing synaptic transmission in Huntington's disease models. Neurobiol. Dis. 93, 47–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Costantine, M. M. et al. Association of polymorphisms in neuroprotection and oxidative stress genes and neurodevelopmental outcomes after preterm birth. Obstetr. Gynecol. 120, 542–550 (2012).

    Article  CAS  Google Scholar 

  108. Nakanishi, N. et al. Neuroprotection by the NR3A subunit of the NMDA receptor. J. Neurosci. 29, 5260–5265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, J. H. et al. A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult mouse. Am. J. Physiol. Cell Physiol. 308, C570–C577 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fernandes, J. et al. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS ONE 9, e99958 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Zhou, C., Sun, H., Klein, P. M. & Jensen, F. E. Neonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons. Front. Cell. Neurosci. 9, 362 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. Fields, R. D. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16, 756–767 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Niemann, S. et al. Genetic ablatio of NMDA receptor subunit NR3B in mouse reveals motoneuronal and nonmotoneuronal phenotypes. Eur. J. Neurosci. 26, 1407–1420 (2007).

    Article  PubMed  Google Scholar 

  114. Liu, H. P. et al. Genetic variation in N-methyl-D-aspartate receptor subunit NR3A but not NR3B influences susceptibility to alzheimer's disease. Dement. Geriatr. Cogn. Disord. 28, 521–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Kazmierski, J. et al. The assessment of the T102C polymorphism of the 5HT2a receptor gene, 3723G/A polymorphism of the NMDA receptor 3A subunit gene (GRIN3A) and 421C/A polymorphism of the NMDA receptor 2B subunit gene (GRIN2B) among cardiac surgery patients with and without delirium. Gen. Hosp. Psychiatry 36, 753–756 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of their groups, as well as K. Hansen, C. Bellone and T. Karadottir for valuable discussion, and L. García-Rabaneda and M. Pérez-Otaño for help with the figures. Work in the authors' laboratories is funded by Spanish Ministry of Science grants (CSD2008-00005 to I.P.-O. and SAF2013-48983-R to I.P.-O. and J.F.W.), UTE project CIMA, Marató TV3 Foundation and the Beca Josefina Garre. R.S.L. is funded by the Allen Institute for Brain Science and wishes to thank the Allen Institute founders, P. G. Allen and J. Allen, for their vision, encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Pérez-Otaño.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Postsynaptic densities

(PSDs). Specializations on excitatory dendritic spines that were originally identified by electron microscopy. They contain glutamate receptors and many associated scaffolding and trafficking proteins that are crucial for excitatory synaptic transmission.

Coincidence detection

A mechanism through which neurons encode information by detecting two nearly simultaneous inputs from distinct sources.

Critical periods

Finite but modifiable developmental time windows during which sensory experience-mediated input provides information that is essential for normal maturation of sensory circuits.

Single-channel conductance

The single-channel current divided by the electrical driving force. It refers to the number of charges flowing through a single open channel under a given transmembrane potential and is usually expressed in picoSiemens (10−12 S).

Open probability

The probability of an individual ion channel being in the open state under a given condition, observed as the fraction of the time that an ionic current is flowing. The value can be between 0 and 1.

Epigenetic changes

Changes in phenotype that are driven by changes in the regulation of gene expression or changes in the function of gene products rather than by a change in genotype. Examples of epigenetic events include DNA methylation, X-chromosome inactivation and embryonic pattern formation.

Prepulse inhibition

A reduction in the magnitude of the startle reflex that occurs when an organism is presented with a non-startling stimulus (a prepulse) before being presented with the startling stimulus. Deficits in prepulse inhibition have been observed in patients with schizophrenia as well as in patients with other psychiatric and neurological disorders.

Non-synonymous variants

Coding-DNA variations that result in an altered amino acid sequence.

Periventricular leukomalacia

A form of white matter injury characterized by ischaemia of white matter adjacent to the lateral ventricles. It is the most common cause of ischaemic brain injury in premature infants, leading to motor problems and developmental delays.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Otaño, I., Larsen, R. & Wesseling, J. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat Rev Neurosci 17, 623–635 (2016). https://doi.org/10.1038/nrn.2016.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing