Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin control of herpes simplex virus lytic and latent infection

Key Points

  • Herpes simplex virus (HSV) undergoes a productive infection of epithelial cells at mucosal surfaces and spreads to sensory neurons, where it can undergo a latent infection. From latently infected cells, HSV can later reactivate to cause a recurrent infection in the epithelium.

  • During lytic infection, histones associate with HSV lytic genes at early times but are reduced by 4–6 hours post-infection. The histones that are associated with HSV DNA bear post-translational modifications that are markers for euchromatin or active chromatin.

  • HSV gene products, including the virion-associated protein VP16, the immediate–early infected cell protein 0 (ICP0) and the early ICP8, are required for the reduced level of histones that are associated with HSV lytic genes and the euchromatic modifications on the histones.

  • During latent infection, HSV lytic genes are associated with heterochromatin.

  • The HSV latency-associated transcript promotes the formation of heterochromatin on the HSV lytic genes and their transcriptional silencing during latent infection of sensory neurons.

  • We propose a chromatin switch model in which HSV gene products that are expressed in epithelial cells 'flip' the switch towards euchromatin in those cells, whereas gene products that are expressed in neuronal cells 'flip' the switch towards heterochromatin and silencing of lytic viral genes.

Abstract

Herpes simplex viruses (HSV) can undergo a lytic infection in epithelial cells and a latent infection in sensory neurons. During latency the virus persists until reactivation, which leads to recurrent productive infection and transmission to a new host. How does HSV undergo such different types of infection in different cell types? Recent research indicates that regulation of the assembly of chromatin on HSV DNA underlies the lytic versus latent decision of HSV. We propose a model for the decision to undergo a lytic or a latent infection in which HSV encodes gene products that modulate chromatin structure towards either euchromatin or heterochromatin, and we discuss the implications of this model for the development of therapeutics for HSV infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of herpes simplex virus infection.
Figure 2: Overview of the herpes simplex virus lytic infection cycle.
Figure 3: The fate of viral DNA.
Figure 4: Summary of potential mechanisms that might determine the outcome of viral infection of epithelial cells and neurons.
Figure 5: Schematic representation of the latency-associated transcriptional unit of the herpes simplex virus genome.

Similar content being viewed by others

References

  1. Seeger, C., Zoulim, F. & Mason, W. S. in Fields Virology 5th edn (eds Knipe, D. M. & Howley, P. M.) 2977–3029 (Lippincott, Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  2. Pellett, P. E. & Roizman, B. in Fields Virology 5th edn (eds Knipe, D. M. & Howley, P. M.) 2479–2500 (Lippincott, Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  3. Roizman, B., Knipe, D. M. & Whitley, R. J. in Fields Virology 5th edn (eds Knipe, D. M. & Howley, P. M.) 2501–2602 (Lippincott, Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  4. Fisman, D. N., Lipsitch, M., Hook, E. W. & Goldie, S. J. Projection of the future dimensions and costs of the genital herpes simplex type 2 epidemic in the United States. Sex Transm. Dis. 29, 608–622 (2002).

    Article  PubMed  Google Scholar 

  5. Kimberlin, D. W. Neonatal herpes simplex infection. Clin. Microbiol. Rev. 17, 1–13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wald, A. & Link, K. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J. Infect. Dis. 185, 45–52 (2002).

    Article  PubMed  Google Scholar 

  7. Freeman, E. E. et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20, 73–83 (2006).

    Article  PubMed  Google Scholar 

  8. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Margolis, T. P. et al. Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory ganglia. J. Virol. 81, 11069–11074 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corey, L., Wald, A. & Davis, L. G. Subclinical shedding of HSV: its potential for reduction by antiviral therapy. Adv. Exp. Med. Biol. 394, 11–16 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Honess, R. W. & Roizman, B. Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc. Natl Acad. Sci. U.S.A 72, 1276–1280 (1975). This paper defined the cascade model of HSV gene regulation by showing that functional IE proteins are needed for induction of E gene expression and functional E proteins are needed for induction of L gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wysocka, J. & Herr, W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem. Sci. 28, 294–304 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Carrozza, M. & DeLuca, N. Interactions of the viral activator protein ICP4 with TFIID through TAF250. Mol. Cell. Biol. 16, 3085–3093 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith, C. A., Bates, P., Rivera-Gonzalez, R., Gu, B. & DeLuca, N. A. ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB. J. Virol. 67, 4676–4687 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Oh, J. & Fraser, N. W. Temporal association of the herpes simplex virus (HSV) genome with histone proteins during a lytic infection. J. Virol. 26 December 2007 (doi: 10.1128/JVI.00586-07).

  16. Cohen, G. H. et al. Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. J. Virol. 34, 521–531 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pignatti, P. F. & Cassai, E. Analysis of herpes simplex virus nucleoprotein complexes extracted from infected cells. J. Virol. 36, 816–828 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cereghini, S. & Yaniv, M. Assembly of transfected DNA into chromatin: structural changes in the origin-promoter-enhancer region upon replication. EMBO J. 3, 1243–1253 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leinbach, S. S. & Summers, W. C. The structure of herpes simplex virus type 1 DNA as probed by micrococcal nuclease digestion. J. Gen. Virol. 51, 45–59 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Lentine, A. F. & Bachenheimer, S. L. Intracellular organization of herpes simplex virus type 1 DNA assayed by staphylococcal nuclease sensitivity. Virus Res. 16, 275–292 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Monier, K., Armas, J. C., Etteldorf, S., Ghazal, P. & Sullivan, K. F. Annexation of the interchromosomal space during viral infection. Nature Cell Biol. 2, 661–665 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Simpson-Holley, M., Baines, J., Roller, R. & Knipe, D. M. Herpes simplex virus 1 UL31 and UL34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J. Virol. 78, 5591–5600 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Herrera, F. J. & Triezenberg, S. J. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J. Virol. 78, 9689–9696 (2004). This paper was the first to show that an HSV protein caused a reduction in total chromatin and an increase in acetylated histone H3 on viral lytic gene promoters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kent, J. R. et al. During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J. Virol. 78, 10178–10186 (2004). This paper was one of the first to show that histones with euchromatin modifications were associated with lytic genes during lytic infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, J. et al. Trimethylation of histone H3 lysine 4 by Set1 in the lytic infection of human herpes simplex virus 1. J. Virol. 80, 5740–5746 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Everett, R. D. Transactivation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity. EMBO J. 3, 3135–3141 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gelman, I. H. & Silverstein, S. Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene. Proc. Natl Acad. Sci. U.S.A. 82, 5265–5269 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Hare, P. & Hayward, G. S. Evidence for a direct role for both the 175,000- and 110,000-molecular-weight immediate-early proteins of herpes simplex virus in the transactivation of delayed-early promoters. J. Virol. 53, 751–760 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Quinlan, M. P. & Knipe, D. M. Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral functions. Mol. Cell. Biol. 5, 957–963 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nabel, G. J., Rice, S. A., Knipe, D. M. & Baltimore, D. Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells. Science 239, 1299–1302 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Sacks, W. R. & Schaffer, P. A. Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J. Virol. 61, 829–839 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai, W. & Schaffer, P. A. Herpes simplex virus type 1 ICP0 regulates expression of immediate–early, early, and late genes in productively infected cells. J. Virol. 66, 2904–2915 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stow, N. D. & Stow, E. C. Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. J. Gen. Virol. 67, 2571–2585 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, J. & Silverstein, S. Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression. J. Virol. 66, 2916–2927 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jordan, R. & Schaffer, P. A. Activation of gene expression by herpes simplex virus type 1 ICP0 occurs at the level of mRNA synthesis. J. Virol. 71, 6850–6862 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hobbs II, W. E. & DeLuca, N. A. Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J. Virol. 73, 8245–8255 (1999).

    Google Scholar 

  37. Poon, A. P. W., Silverstein, S. J. & Roizman, B. An early regulatory function required in a cell type-dependent manner is expressed by the genomic but not the cDNA copy of the herpes simplex virus 1 gene encoding infected cell protein 0. J. Virol. 76, 9744–9755 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Everett, R. D. ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22, 761–770 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Everett, R. D. et al. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J. Virol. 80, 7995–8005 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Everett, R. D. et al. The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J. Virol. 72, 6581–6591 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chee, A. V., Lopez, P., Pandolfi, P. P. & Roizman, B. Promyelocytic leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J. Virol. 77, 7101–7105 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lomonte, P. et al. Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J. Virol. 78, 6744–6757 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gu, H., Liang, Y., Mandel, G. & Roizman, B. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc. Natl Acad. Sci. U.S.A. 102, 7571–7576 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu, H. & Roizman, B. Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST–REST complex. Proc. Natl Acad. Sci. U.S.A. 104, 17134–17139 (2007). This paper defined a molecular mechanism by which ICP0 blocks chromatin silencing of HSV genes (by dissociating HDACs from the CoREST–REST complex).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coleman, H. M. et al. Histone modifications associated with herpes simplex virus type 1 genomes during quiescence and following ICP0-mediated de-repression. J. Gen. Virol. 89, 68–77 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He, G., Ylisastigui, L. & Margolis, D. M. The regulation of HIV-1 gene expression: the emerging role of chromatin. DNA Cell Biol. 21, 697–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Poon, A. P., Gu, H. & Roizman, B. ICP0 and the US3 protein kinase of herpes simplex virus 1 independently block histone deacetylation to enable gene expression. Proc. Natl Acad. Sci. U.S.A. 103, 9993–9998 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor, T. J. & Knipe, D. M. Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J. Virol. 78, 5856–5866 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao, M. & Knipe, D. M. Distal protein sequences can affect the function of a nuclear localization signal. Mol. Cell. Biol. 12, 1330–1339 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kosz-Vnenchak, M., Coen, D. M. & Knipe, D. M. Restricted expression of herpes simplex virus lytic genes during establishment of latent infection by thymidine kinase-negative mutant viruses. J. Virol. 64, 5396–5402 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Valyi-Nagy, T., Deschmane, S. L., Dillner, A. & Fraser, N. W. Induction of cellular transcription factors in trigeminal ganglia of mice by corneal scarification, herpes simplex virus type 1 infection, and explantation of trigeminal ganglia. J. Virol. 65, 4142–4152 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kramer, M. F., Chen, S. H., Knipe, D. M. & Coen, D. M. Accumulation of viral transcripts and DNA during establishment of latency by herpes simplex virus. J. Virol. 72, 1177–1185 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Garber, D. A., Schaffer, P. A. & Knipe, D. M. A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J. Virol. 71, 5885–5893 (1997). This paper provided the first evidence that the LAT causes the silencing of viral lytic genes during acute infection of sensory neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L. & Feldman, L. T. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235, 1056–1059 (1987). This paper provided the first evidence of the LAT in sensory neurons.

    Article  CAS  PubMed  Google Scholar 

  55. Sedarati, F., Margolis, T. P. & Stevens, J. G. Latent infection can be established with drastically restricted transcription and replication of the HSV-1 genome. Virology 192, 687–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Coen, D. M. et al. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc. Natl Acad. Sci. U.S.A. 86, 4736–4740 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Speck, P. G. & Simmons, A. Divergent molecular pathways of productive and latent infection with a virulent strain of herpes simplex virus type 1. J. Virol. 65, 4001–4005 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Margolis, T. P., Sedarati, F., Dobson, A. T., Feldman, L. T. & Stevens, J. G. Pathways of viral gene expression during acute neuronal infection with HSV-1. Virology 189, 150–160 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Stevens, J. G., Haarr, L., Porter, D. D., Cook, M. L. & Wagner, E. K. Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans. J. Inf. Dis. 158, 117–123 (1988).

    Article  CAS  Google Scholar 

  60. Krause, P. R., Croen, K. D., Straus, S. E. & Ostrove, J. M. Detection and preliminary characterization of herpes simplex virus type 1 transcripts in latently infected human trigeminal ganglia. J. Virol. 62, 4819–4823 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rock, D. L. et al. Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J. Virol. 61, 3820–3826 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wagner, E. K. et al. Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J. Virol. 62, 1194–1202 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Farrell, M. J., Dobson, A. T. & Feldman, L. T. Herpes simplex virus latency-associated transcript is a stable intron. Proc. Natl Acad. Sci. U.S.A. 88, 790–794 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dobson, A. T. et al. Identification of the latency-associated transcript promotor by expression of rabbit β-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J. Virol. 65, 3844–3851 (1989).

    Google Scholar 

  65. Lokensgard, J. R., Berthomme, H. & Feldman, L. T. The latency-associated promoter of herpes simplex virus type 1 requires a region downstream of the transcription start site for long-term expression during latency. J. Virol. 71, 6714–6719 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lokensgard, J. R., Bloom, D. C., Dobson, A. T. & Feldman, L. T. Long-term promoter activity during herpes simplex virus latency. J. Virol. 68, 7148–7158 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Batchelor, A. H. & O'Hare, P. Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1. J. Virol. 64, 3269–3279 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zwaagstra, J. C. et al. Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J. Virol. 64, 5019–5028 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kenny, J. J. et al. Identification of a second ATF/CREB-like element in the herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) promoter. Virology 200, 220–235 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Spivack, J. G. & Fraser, N. W. Detection of herpes simplex virus type 1 transcripts during latent infection in mice. J. Virol. 61, 3841–3847 (1987); erratum in 62, 663 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Godowski, P. J. & Knipe, D. M. Transcriptional control of herpesvirus gene expression: gene functions required for positive and negative regulation. Proc. Natl Acad. Sci. U.S.A. 83, 256–260 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thomas, S. K., Gough, G., Latchman, D. S. & Coffin, R. S. Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate–early gene expression, and is likely to function during reactivation from virus latency. J. Virol. 73, 6618–6625 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Doerig, C., Pizer, L. I. & Wilcox, C. L. An antigen encoded by the latency-associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1. J. Virol. 65, 2724–2727 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Drolet, B. S. et al. The region of the herpes simplex virus type 1 LAT gene involved in spontaneous reactivation does not encode a functional protein. Virology 242, 221–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Javier, R. T., Stevens, J. G., Dissette, V. B. & Wagner, E. K. A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166, 254–257 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Leib, D. A. et al. A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J. Virol. 63, 2893–2900 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Steiner, I. et al. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J. 8, 505–511 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sawtell, N. M. & Thompson, R. L. Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J. Virol. 66, 2150–2156 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Thompson, R. L. & Sawtell, N. M. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J. Virol. 71, 5432–5440 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Block, T. M. et al. An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV-1 monolayers. Virology 192, 618–630 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Bloom, D. C. et al. A 348-base-pair region in the latency-associated transcript facilitates herpes simplex virus type 1 reactivation. J. Virol. 70, 2449–2459 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hill, J. M. et al. Quantitation of herpes simplex virus type 1 DNA and latency-associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency. J. Virol. 70, 3137–3141 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, S. H., Kramer, M. F., Schaffer, P. A. & Coen, D. M. A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J. Virol. 71, 5878–5884 (1997). This paper provided the first evidence that the LAT causes the silencing of viral lytic genes during latent infection of sensory neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mador, N., Goldenberg, D., Cohen, O., Panet, A. & Steiner, I. Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate–early gene mRNA levels in a neuronal cell line. J. Virol. 72, 5067–5075 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Thompson, R. L. & Sawtell, N. M. Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J. Virol. 75, 6660–6675 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, Q.-Y. et al. Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc. Natl Acad. Sci. U.S.A. 102, 16055–16059 (2005). This paper showed that the LAT promotes heterochromatin assembly on HSV lytic genes during latent infection and silencing of these genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Perng, G. C. et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287, 1500–1503 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Bloom, D. C. HSV LAT and neuronal survival. Int. Rev. Immunol. 23, 187–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Fraser, J. W., Deatly, A. M., Mellerick, M. I., Muggeridge, J. I. & Spivack, J. G. in Human Herpesvirus Infections: Pathogenesis, Diagnosis, and Treatment (eds Lopez, C. & Roizman, B.) 39–54 (Raven Press, New York, 1986).

    Google Scholar 

  90. Mellerick, D. M. & Fraser, N. W. Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158, 265–275 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. Rock, D. L. & Fraser, N. W. Latent herpes simplex virus type 1 DNA contains two copies of the virion DNA joint region. J. Virol. 55, 849–852 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rock, D. L. & Fraser, N. W. Detection of HSV-1 genome in central nervous system of latently infected mice. Nature 302, 523–525 (1983).

    Article  CAS  PubMed  Google Scholar 

  93. Deshmane, S. L. & Fraser, N. W. During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J. Virol. 63, 943–947 (1989). This paper showed that HSV DNA is associated with nucleosomes during latent infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kubat, N. J., Amelio, A. L., Giordani, N. V. & Bloom, D. C. The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription. J. Virol. 78, 12508–12518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dressler, G. R., Rock, D. L. & Fraser, N. W. Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo. J. Gen. Virol. 68, 1761–1765 (1987).

    Article  CAS  PubMed  Google Scholar 

  96. Kubat, N. J., Tran, R. K., McAnany, P. & Bloom, D. C. Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression. J. Virol. 78, 1139–1149 (2004). This paper provided evidence that the LAT promoter is associated with acetylated histones during latent infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Amelio, A. L., McAnany, P. K. & Bloom, D. C. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. J. Virol. 80, 2358–2368 (2006). This paper showed that the LAT promoter is surrounded by sequences that can function as insulators to maintain chromatin boundaries around the LAT promoter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Spivack, J. G. & Fraser, N. W. Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection. J. Virol. 62, 1479–1485 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Amelio, A. L., Giordani, N. V., Kubat, N. J., O'Neil J. E. & Bloom, D. C. Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J. Virol. 80, 2063–2068 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kosz-Vnenchak, M., Jacobson, J., Coen, D. M. & Knipe, D. M. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J. Virol. 67, 5383–5393 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Devi-Rao, G. B., Bloom, D. C., Stevens, J. G. & Wagner, E. K. Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia. J. Virol. 68, 1271–1282 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Arthur, J. L. et al. Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro. J. Virol. 75, 3885–3895 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Neumann, D. M., Bhattacharjee, P. S., Giordani, N. V., Bloom, D. C. & Hill, J. M. In vivo changes in the patterns of chromatin structure associated with the latent herpes simplex virus type 1 genome in mouse trigeminal ganglia can be detected at early times after butyrate treatment. J. Virol. 81, 13248–13253 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kemp, L. M., Dent, C. L. & Latchman, D. S. Octamer motif mediates transcriptional repression of HSV immediate–early genes and octamer-containing cellular promoters in neuronal cells. Neuron 4, 215–222 (1990).

    Article  CAS  PubMed  Google Scholar 

  105. Lillycrop, K. A. et al. The octamer-binding protein Oct-2 represses HSV immediate–early genes in cell lines derived from latently infectable sensory neurons. Neuron 7, 381–390 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Hagmann, M., Georgiev, O., Schaffner, W. & Douville, P. Transcription factors interacting with herpes simplex virus alpha gene promoters in sensory neurons. Nucleic Acids Res. 23, 4978–4985 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sears, A. E., Hukkanen, V., Labow, M. A., Levine, A. J. & Roizman, B. Expression of the herpes simplex virus 1 α transinducing factor (VP16) does not induce reactivation of latent virus or prevent the establishment of latency in mice. J. Virol. 65, 2929–2935 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. He, X. et al. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 340, 35–41 (1989).

    Article  CAS  PubMed  Google Scholar 

  109. Kristie, T. M., Vogel, J. L. & Sears, A. E. Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency. Proc. Natl Acad. Sci. U.S.A. 96, 1229–1233 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. La Boissiere, S., Hughes, T. & O'Hare, P. HCF-dependent nuclear import of VP16. EMBO J. 18, 480–489 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Grewal, S. I. & Jia, S. Heterochromatin revisited. Nature Rev. Genet. 8, 35–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, D. H., Villeneuve, L. M., Morris, K. V. & Rossi, J. J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nature Struct. Mol. Biol. 13, 793–797 (2006).

    Article  CAS  Google Scholar 

  113. Ng, K., Pullirsch, D., Leeb, M. & Wutz, A. Xist and the order of silencing. EMBO Rep. 8, 34–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kramer, M. F. & Coen, D. M. Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J. Virol. 69, 1389–1399 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, S.-H. et al. Neither LAT nor open reading frame P mutations increase expression of spliced or intron-containing ICP0 transcripts in mouse ganglia latently infected with herpes simplex virus. J. Virol. 76, 4764–4772 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nature Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Cui, C. et al. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 80, 5499–5508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gupta, A., Gartner, J. J., Sethupathy, P., Hatzigeorgiou, A. G. & Fraser, N. W. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442, 82–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Sugden, B. Virology: micro mystery solution. Nature 442, 33–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Lieberman, P. M. Chromatin regulation of virus infection. Trends Microbiol. 14, 132–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Imperiale, M. J. & Major, E. O. in Fields Virology 5th edn (eds Knipe, D. M. & Howley, P. M.) 2263–2298 (Lippincott, Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  123. Berk, A. J. in Fields Virology 5th edn (eds Knipe, D. M. &Howley, P. M.) 2355–2394 (Lippincott, Williams &Wilkins, Philadelphia, 2007).

    Google Scholar 

  124. Saffert, R. T. & Kalejta, R. F. Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate–early gene expression. J. Virol. 80, 3863–3871 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nevels, M., Paulus, C. & Shenk, T. Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc. Natl Acad. Sci. U.S.A. 101, 17234–17239 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Demonte, D., Quivy, V., Colette, Y. & Van Lint, C. Administration of HDAC inhibitors to reactivate HIV-1 expression in latent cellular reservoirs: implications for the development of therapeutic strategies. Biochem. Pharmacol. 68, 1231–1238 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Ylisastigui, L., Archin, N. M., Lehrman, G., Bosch, R. J. & Margolis, D. M. Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS 18, 1101–1108 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Dudek, T. & Knipe, D. M. Replication-defective viruses as vaccines and vaccine vectors. Virology 344, 230–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Margolis, D. M. & Archin, N. M. Attacking HIV provirus: therapeutic strategies to disrupt persistent infection. Infect. Disord. Drug Targets 6, 369–376 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Lehrman, G. et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366, 549–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Feng, W. H., Hong, G., Delecluse, J. J. & Kenney, S. C. Lytic induction therapy for Epstein–Barr virus-positive B-cell lymphomas. J. Virol. 78, 1893–1902 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Feng, W. H. & Kenney, S. C. Valproic acid enhances the efficacy of chemotherapy in EBV-positive tumors by increasing lytic viral gene expression. Cancer Res. 66, 8762–8769 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Neumann, D. M., Bhattacharjee, P. S. & Hill, J. M. Sodium butyrate: a chemical inducer of in vivo reactivation of herpes simplex virus type 1 in the ocular mouse model. J. Virol. 81, 6106–6110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Studies on HSV latent infection in the authors' laboratory are supported by NIH grant P01 NS35138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Knipe.

Related links

Related links

DATABASES

Entrez Genome Project

HSV-1

HSV-2

FURTHER INFORMATION

David Knipe's homepage

Glossary

Epigenetic

Factors that affect gene action without changing nucleotide sequence. Epigenetic modifications function by changing the structure of chromatin, and are facilitated by DNA methylation and histone modification.

Nucleosome

A subunit of chromatin that is composed of DNA wrapped around a tetramer of histone proteins.

Anterograde transport

The direction of anterograde axonal transport is from the cell body to the synapses. By contrast, retrograde axonal transport is from the synapses to the cell body.

Trigeminal ganglia

The trigeminal ganglion is a sensory ganglion of the trigeminal nerve that occupies a cavity in the dura mater that covers the trigeminal impression near the apex of the petrous part of the temporal bone.

Nucleoside analogues

Nucleoside analogues are chemically similar enough to nucleosides to be incorporated into growing DNA strands, but different enough to ensure that the resultant DNA is non-functional.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knipe, D., Cliffe, A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6, 211–221 (2008). https://doi.org/10.1038/nrmicro1794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing