Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Communication in bacteria: an ecological and evolutionary perspective

Key Points

  • Understanding why and how bacteria react to the chemical substances that are produced by other bacteria requires an understanding of the nature of the chemical interaction, and the determination of the effect on the fitness of the emitter and receiver.

  • The nature of chemical interactions between bacteria is not necessarily in the form of cooperative signals, but also includes other chemical interactions, such as cues and chemical manipulation.

  • The specificity and reliability of communication depends on the cost of signal production. This cost can be approximated by the biosynthetic cost of signalling, and there is a correlation between the cost of signal production and the specificity of the signalling molecules for the three most common signalling pathways.

  • High relatedness, as occurs, for example, when all cells develop from a single founding cell, is a key factor that promotes cooperation and true communication. Inversely, true communication and cooperation are unlikely to be common between species.

  • A review of the data shows that the evolutionary framework, developed above, allows us to gain a better understanding of quorum sensing and the nature of communication between bacteria, as well as between bacteria and their host.

Abstract

Individual bacteria can alter their behaviour through chemical interactions between organisms in microbial communities ? this is generally referred to as quorum sensing. Frequently, these interactions are interpreted in terms of communication to mediate coordinated, multicellular behaviour. We show that the nature of interactions through quorum-sensing chemicals does not simply involve cooperative signals, but entails other interactions such as cues and chemical manipulations. These signals might have a role in conflicts within and between species. The nature of the chemical interaction is important to take into account when studying why and how bacteria react to the chemical substances that are produced by other bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generic scheme for quorum sensing.
Figure 2: The pathways for production of the three common quorum-sensing signals in bacteria.
Figure 3: Clonal relationship and intraspecies signalling.
Figure 4: Chemical signalling within microbial communities of oral bacteria.

Similar content being viewed by others

References

  1. Greenberg, E. P. Bacterial communication: tiny teamwork. Nature 424, 134 (2003).

    CAS  PubMed  Google Scholar 

  2. Henke, J. M. & Bassler, B. L. Bacterial social engagements. Trends Cell Biol. 14, 648?656 (2004).

    CAS  PubMed  Google Scholar 

  3. Kolenbrander, P. E., Egland, P. G., Diaz, P. I. & Palmer, R. J. Jr. Genome?genome interactions: bacterial communities in initial dental plaque. Trends Microbiol. 13, 11?15 (2005).

    CAS  PubMed  Google Scholar 

  4. Lyon, G. J. & Novick, R. P. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25, 1389?1403 (2004).

    CAS  PubMed  Google Scholar 

  5. Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27?33 (2005).

    CAS  PubMed  Google Scholar 

  6. Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178?183 (2001).

    PubMed  Google Scholar 

  7. Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, Princeton, 1995).

    Google Scholar 

  8. Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1?16 (1964).

    CAS  PubMed  Google Scholar 

  9. Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17?52 (1964).

    CAS  PubMed  Google Scholar 

  10. Keller, L. Levels of Selection in Evolution (Princeton University Press, Princeton 1999). A book that reviews examples of conflicts that occur at the different levels of biological organization (for example, between genes within organisms and between organisms within social groups).

    Google Scholar 

  11. Szathmary, E. & Maynard Smith, J. The Major Transitions in Evolution (Freeman Press, Oxford 1995).

    Google Scholar 

  12. Keller, L. & Reeve, H. K. Kin selection. In Encyclopedia of Evolution 595?600 (Oxford University Press, Oxford, 2002).

    Google Scholar 

  13. Queller, D. C. Does population viscosity promote kin selection? Trends Ecol. Evol. 7, 322?324 (1992).

    CAS  PubMed  Google Scholar 

  14. Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365?370 (2002). A thought-provoking commentary that challenges the conventional view of quorum sensing.

    CAS  PubMed  Google Scholar 

  15. Shompole, S. et al. Biphasic intracellular expression of Staphylococcus aureus virulence factors and evidence for Agr-mediated diffusion sensing. Mol. Microbiol. 49, 919?927 (2003).

    CAS  PubMed  Google Scholar 

  16. McFall-Ngai, M. J. Negotiations between animals and bacteria: the 'diplomacy' of the squid?Vibrio symbiosis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 471?480 (2000).

    CAS  PubMed  Google Scholar 

  17. Ruby, E. G. The Euprymna scolopes?Vibrio fischeri symbiosis: a biomedical model for the study of bacterial colonization of animal tissue. J. Mol. Microbiol. Biotechnol. 1, 13?21 (1999).

    CAS  PubMed  Google Scholar 

  18. Visick, K. L. Layers of signaling in a bacterium?host association. J. Bacteriol. 187, 3603?3606 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hastings, J. W. & Greenberg, E. P. Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J. Bacteriol. 181, 2667?2668 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135?160 (2004). A review of the mechanisms and selective forces that can maintain cooperation within and between species.

    PubMed  Google Scholar 

  21. Manefield, M. & Turner, S. L. Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology 148, 3762?3764 (2002).

    CAS  PubMed  Google Scholar 

  22. Kleerebezem, M., Quadri, L. E., Kuipers, O. P. & de Vos, W. M. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24, 895?904 (1997).

    CAS  PubMed  Google Scholar 

  23. Mayville, P. et al. Structure?activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl Acad. Sci. USA 96, 1218?1223 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science 276, 2027?2030 (1997).

    CAS  PubMed  Google Scholar 

  25. Lyon, G. J., Wright, J. S., Muir, T. W. & Novick, R. P. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 41, 10095?10104 (2002).

    CAS  PubMed  Google Scholar 

  26. Eberl, L. N-acyl homoserinelactone-mediated gene regulation in Gram-negative bacteria. Syst. Appl. Microbiol. 22, 493?506 (1999).

    CAS  PubMed  Google Scholar 

  27. Fuqua, C., Parsek, M. R. & Greenberg, E. P. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439?468 (2001).

    CAS  PubMed  Google Scholar 

  28. Pearson, J. P. et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl Acad. Sci. USA 91, 197?201 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Winson, M. K. et al. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 92, 9427?9431 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shaw, P. D. et al. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl Acad. Sci. USA 94, 6036?6041 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Surette, M. G., Miller, M. B. & Bassler, B. L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl Acad. Sci. USA 96, 1639?1644 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xavier, K. B. & Bassler, B. L. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6, 191?197 (2003).

    CAS  PubMed  Google Scholar 

  33. Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M. & Hardie, K. R. Making 'sense' of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nature Rev. Microbiol. 3, 383?396 (2005).

    CAS  Google Scholar 

  34. Sun, J., Daniel, R., Wagner-Dobler, I. & Zeng, A. P. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol. Biol. 4, 36 (2004).

    PubMed  PubMed Central  Google Scholar 

  35. Schauder, S., Shokat, K., Surette, M. G. & Bassler, B. L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41, 463?476 (2001).

    CAS  PubMed  Google Scholar 

  36. Burgess, N. A. et al. LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology 148, 763?772 (2002).

    CAS  PubMed  Google Scholar 

  37. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545?549 (2002). This paper reports the structure of AI-2 as it is bound in the Vibrio harveyi receptor LuxP complexed with boron (see also reference 41).

    CAS  PubMed  Google Scholar 

  38. Miller, S. T. et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15, 677?687 (2004).

    CAS  PubMed  Google Scholar 

  39. Winzer, K., Hardie, K. R. & Williams, P. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv. Appl. Microbiol. 53, 291?396 (2003).

    CAS  PubMed  Google Scholar 

  40. Travisano, M. & Velicer, G. J. Strategies of microbial cheater control. Trends Microbiol. 12, 72?78 (2004).

    CAS  PubMed  Google Scholar 

  41. Velicer, G. J. Social strife in the microbial world. Trends Microbiol. 11, 330?337 (2003). This review provides examples of selfish strategies that undermine cooperative behaviour across various microbial systems.

    CAS  PubMed  Google Scholar 

  42. Maynard Smith, J. & Harper, D. Animal Signals (Oxford University Press, Oxford, 2003). A book that discusses, from a theoretical perspective, the problem of communication in animals.

    Google Scholar 

  43. Duan, K., Dammel, C., Stein, J., Rabin, H. & Surette, M. G. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol. 50, 1477?1491 (2003). Demonstrates the interaction of oropharyngeal flora with P. aeruginosa , which results in enhanced pathogenicity. This is an example of the pathogen using AI-2 that is produced by other bacteria as a cue.

    CAS  PubMed  Google Scholar 

  44. Varaldi, J. et al. Infectious behavior in a parasitoid. Science 302, 1930 (2003).

  45. Thomas, F., Adamo, S. & Moore, J. Parasitic manipulation: where are we and where should we go? Behav. Processes 68, 185?199 (2005).

    PubMed  Google Scholar 

  46. Werren, J. H. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587?609 (1997).

    CAS  PubMed  Google Scholar 

  47. Kolenbrander, P. E. et al. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66, 486?505 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Marsh, P. D. Dental plaque as a microbial biofilm. Caries Res. 38, 204?211 (2004).

    CAS  PubMed  Google Scholar 

  49. Egland, P. G., Palmer, R. J. Jr & Kolenbrander, P. E. Interspecies communication in Streptococcus gordonii?Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl Acad. Sci. USA 101, 16917?16922 (2004). Demonstrates an example of chemical manipulation between two oral bacteria, in which one strain produces a signal that alters the metabolism of the other. It also demonstrates that signalling occurs only on a very local scale.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024?1027 (2004). Shows that experimental manipulation of relatedness affects the level cooperative siderophore production in P. aeruginosa .

    CAS  PubMed  Google Scholar 

  51. Fiegna, F. & Velicer, G. J. Exploitative and hierarchical antagonism in a cooperative bacteria. PLoS Biol. 3, 1980?1087 (2005).

    CAS  Google Scholar 

  52. Escalante, R. & Vicente, J. J. Dictyostelium discoideum: a model system for differentiation and patterning. Int. J. Dev. Biol. 44, 819?835 (2000).

    CAS  PubMed  Google Scholar 

  53. Weijer, C. J. Dictyostelium morphogenesis. Curr. Opin. Genet. Dev. 14, 392?398 (2004).

    CAS  PubMed  Google Scholar 

  54. Kaiser, D. Signaling in myxobacteria. Annu. Rev. Microbiol. 58, 75?98 (2004).

    CAS  PubMed  Google Scholar 

  55. Kaplan, H. B. Multicellular development and gliding motility in Myxococcus xanthus. Curr. Opin. Microbiol. 6, 572?577 (2003).

    CAS  PubMed  Google Scholar 

  56. Sogaard-Andersen, L. Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr. Opin. Microbiol. 7, 587?593 (2004).

    CAS  PubMed  Google Scholar 

  57. Shimkets, L. J. Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu. Rev. Microbiol. 53, 525?549 (1999).

    CAS  PubMed  Google Scholar 

  58. Jelsbak, L. & Sogaard-Andersen, L. The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis. Proc. Natl Acad. Sci. USA 96, 5031?5036 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kruse, T., Lobedanz, S., Berthelsen, N. M. & Sogaard-Andersen, L. C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus. Mol. Microbiol. 40, 156?168 (2001).

    CAS  PubMed  Google Scholar 

  60. Strassmann, J. E. Bacterial cheaters. Nature 404, 555?556 (2000).

    CAS  PubMed  Google Scholar 

  61. Velicer, G. J., Kroos, L. & Lenski, R. E. Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404, 598?601 (2000). Demonstrates that some mutants that are defective for fruiting-body development are over-represented among the spores that are produced. This shows a trade-off between cooperative traits that is beneficial to the group but costly to the individual.

    CAS  PubMed  Google Scholar 

  62. Chandler, J. R. & Dunny, G. M. Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides 25, 1377?1388 (2004).

    CAS  PubMed  Google Scholar 

  63. Dunny, G. M., Antiporta, M. H. & Hirt, H. Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis: probing the genetic and molecular basis for specificity of the pheromone response. Peptides 22, 1529?1539 (2001).

    CAS  PubMed  Google Scholar 

  64. Diaz, E. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int. Microbiol. 7, 173?180 (2004).

    CAS  PubMed  Google Scholar 

  65. Lewenza, S., Visser, M. B. & Sokol, P. A. Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. Can. J. Microbiol. 48, 707?716 (2002).

    CAS  PubMed  Google Scholar 

  66. Riedel, K. et al. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147, 3249?3262 (2001).

    CAS  PubMed  Google Scholar 

  67. Chambers, C. E., Visser, M. B., Schwab, U. & Sokol, P. A. Identification of N-acylhomoserine lactones in mucopurulent respiratory secretions from cystic fibrosis patients. FEMS Microbiol. Lett. 244, 297?304 (2005).

    CAS  PubMed  Google Scholar 

  68. Geisenberger, O. et al. Production of N-acyl-L-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis. FEMS Microbiol. Lett. 184, 273?278 (2000).

    CAS  PubMed  Google Scholar 

  69. Romano, J. D. & Kolter, R. Pseudomonas?Saccharomyces interactions: influence of fungal metabolism on bacterial physiology and survival. J. Bacteriol. 187, 940?948 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. DeLoney-Marino, C. R., Wolfe, A. J. & Visick, K. L. Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl. Environ. Microbiol. 69, 7527?7530 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Graf, J., Dunlap, P. V. & Ruby, E. G. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176, 6986?6991 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Millikan, D. S. & Ruby, E. G. Alterations in Vibrio fischeri motility correlate with a delay in symbiosis initiation and are associated with additional symbiotic colonization defects. Appl. Environ. Microbiol. 68, 2519?2528 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lupp, C. & Ruby, E. G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187, 3620?3629 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lupp, C. & Ruby, E. G. Vibrio fischeri LuxS and AinS: comparative study of two signal synthases. J. Bacteriol. 186, 3873?3881 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Doino, J. & McFall-Ngai, M. transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol. Bull. 189, 347?355 (1995).

    CAS  PubMed  Google Scholar 

  76. Doino Lemus, J. & McFall-Ngai, M. J. Alterations in the proteome of the Euprymna scolopes light organ in response to symbiotic Vibrio fischeri. Appl. Environ. Microbiol. 66, 4091?4097 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Foster, J. S., Apicella, M. A. & McFall-Ngai, M. J. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226, 242?254 (2000).

    CAS  PubMed  Google Scholar 

  78. Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578?4586 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ruby, E. G. & McFall-Ngai, M. J. Oxygen-utilizing reactions and symbiotic colonization of the squid light organ by Vibrio fischeri. Trends Microbiol. 7, 414?420 (1999).

    CAS  PubMed  Google Scholar 

  80. Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume?Rhizobium mutualism. Nature 425, 78?81 (2003).

    CAS  PubMed  Google Scholar 

  81. Li, L., Hooi, D., Chhabra, S. R., Pritchard, D. & Shaw, P. E. Bacterial N-acylhomoserine lactone-induced apoptosis in breast carcinoma cells correlated with down-modulation of STAT3. Oncogene 23, 4894?4902 (2004).

    CAS  PubMed  Google Scholar 

  82. Tateda, K. et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect. Immun. 71, 5785?5793 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ritchie, A. J. et al. The Pseudomonas aeruginosa quorum-sensing molecule N-3-(oxododecanoyl)-L-homoserine lactone inhibits T-cell differentiation and cytokine production by a mechanism involving an early step in T-cell activation. Infect. Immun. 73, 1648?1655 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Smith, R. S., Kelly, R., Iglewski, B. H. & Phipps, R. P. The Pseudomonas autoinducer N-(3-oxododecanoyl) homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J. Immunol. 169, 2636?2642 (2002).

    CAS  PubMed  Google Scholar 

  85. Telford, G. et al. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect. Immun. 66, 36?42 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hooi, D. S., Bycroft, B. W., Chhabra, S. R., Williams, P. & Pritchard, D. I. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect. Immun. 72, 6463?6470 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chun, C. K., Ozer, E. A., Welsh, M. J., Zabner, J. & Greenberg, E. P. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl Acad. Sci. USA 101, 3587?3590 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Givskov, M. et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178, 6618?6622 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Manefield, M. et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145, 283?291 (1999).

    CAS  PubMed  Google Scholar 

  90. Solomon, J. M., Lazazzera, B. A. & Grossman, A. D. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev. 10, 2014?2024 (1996).

    CAS  PubMed  Google Scholar 

  91. Tummler, B. et al. Infections with Pseudomonas aeruginosa in patients with cystic fibrosis. Behring Inst. Mitt. 98, 249?255 (1997).

    Google Scholar 

  92. Schaber, J. A. et al. Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J. Med. Microbiol. 53, 841?853 (2004).

    CAS  PubMed  Google Scholar 

  93. Blehert, D. S., Palmer, R. J. Jr, Xavier, J. B., Almeida, J. S. & Kolenbrander, P. E. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185, 4851?4860 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. McNab, R. et al. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185, 274?284 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, Y. H., Lau, P. C., Lee, J. H., Ellen, R. P. & Cvitkovitch, D. G. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183, 897?908 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, Y. H. et al. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184, 2699?2708 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Bassler, C. Davidson, P. Greenberg, G. Velicer, K. Visick, P. Williams and four reviewers for their useful comments on the manuscript. The authors were supported by grants from the Swiss National Science Foundation (L.K.) and the Canadian Institutes of Health Research (M.G.S.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Agrobacterium tumefaciens

Chromobacterium violaceum

Myxococcus xanthus

Pseudomonas aeruginosa

Pseudomonas putida

Saccharomyces cerevisiae

Salmonella enterica serovar Typhimurium

Staphylococcus aureus

Streptococcus gordonii

Vibrio fischeri

FURTHER INFORMATION

Laurent Keller's homepage

Micheal G. Surette's homepage

Entrez PubMed

Glossary

Secondary metabolite

Chemical produced by the cell that is not essential for maintenance of cellular function or for normal growth of the organism.

Quorum sensing

A system by which bacteria communicate and obtain information on bacterial density in their environment.

Autoinducer

A system by which bacteria communicate. Signalling molecules are chemicals, similar to pheromones that are produced by an individual bacterium, which can affect the behaviour of surrounding bacteria.

Signal

Any act, structure or chemical emission that alters the behaviour and gene expression of other organisms which evolved because of that effect, and that is effective because the receiver's response has also evolved.

N-acyl homoserine lactone

A group of intercellular signalling molecules, produced by some Gram-negative bacteria, made up of a homoserinelactone ring with an N-linked acyl side chain.

LuxS/autoinducer-2

(AI-2). Refers to a conserved gene (luxS) found in both Gram-negative and Gram-positive bacteria that mediates production of a common signalling molecule autoinducer-2.

Pre-protein

A protein initially synthesized as an inactive form that undergoes proteolytic cleavage to release the active protein or peptide.

Chemical manipulation

Chemical emission that alters the behaviour and gene expression of other organisms. However, contrary to a signal, the effect induced by chemical manipulation has a negative effect on the fitness of the receiver.

Cue

An act, structure or chemical emission that alters the behaviour and gene expression of other organisms. However, contrary to a signal, it did not evolve specifically for that effect.

Fruiting body

A specialized macroscopic, spore-producing structure that is formed by some fungi (for example, mushrooms), slime moulds and mycobacteria.

Cheater

An individual obtaining benefits from a collectively produced public good that are disproportionally large relative to its own contribution to that good.

Conjugative plasmid

A plasmid that can move from one cell to another during the process of conjugation.

Symbiont

An organism living in a close, long-lasting and more or less beneficial association with another organism.

Syntrophic association

A process whereby two or more microorganisms cooperate to degrade a substrate or substrates that neither can degrade alone.

Niche partitioning

The division of a limiting resource(s) among the species that share it.

Flushing

The removal of chemicals and/or individuals from an area by a current or flow through the area.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, L., Surette, M. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4, 249–258 (2006). https://doi.org/10.1038/nrmicro1383

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing