Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evasion and interference: intracellular pathogens modulate caspase-dependent inflammatory responses

Key Points

  • Bacteria and viruses that interact directly with the host cell cytosol risk triggering pro-inflammatory caspase-dependent defences, which include pyroptosis, lytic cell death and the secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18.

  • Caspase 1 can be activated by receptors that detect specific pathogen-derived molecules (such as flagellin, type III secretion components or certain nucleic acids), or by the production and incorrect localization of host-derived molecules. Caspase 11, caspase 4 and caspase 5 are pro-inflammatory caspases that trigger pyroptosis in response to cytosolic lipopolysaccharide.

  • Receptor engagement initiates the oligomerization of receptors, adaptors and caspase 1 into a multiprotein complex termed the inflammasome, in which the activation of caspase 1 and the cleavage of pro-IL-1β and pro-IL-18 occur.

  • Inflammation is a threshold-driven process. Extracellular and endosomal detection of pathogen-derived molecules can activate the transcription of inflammasome components, which 'primes' the cell for the activation of pro-inflammatory caspases if intracellular triggers are subsequently detected.

  • Pathogens have evolved strategies to deal with inflammation. Some bacteria evade priming or the activation of pro-inflammatory caspases by downregulating or modifying inflammatory triggers. Some bacteria and viruses directly interfere with the assembly of the inflammasome, the enzymatic activity of caspase-1, or pro-inflammatory cytokine signalling. Yersinia pestis, the aetiological agent of plague, is an example of a pathogen that uses several strategies to delay inflammation.

Abstract

Pathogens have evolved to complete the virulence cycle of colonization, replication and dissemination in intimate association with a complex network of extracellular and intracellular surveillance systems that guard tissue spaces. In this Review, we discuss the strategies used by bacteria and viruses to evade or inhibit intracellular detection that is coupled to pro-inflammatory caspase-dependent protective responses. Such strategies include alterations of lipopolysaccharide (LPS) structures, the regulated expression of components of type III secretion systems, and the utilization of proteins that inhibit inflammasome formation, the enzymatic activity of caspases and cytokine signalling. Inflammation is crucial in response to exposure to pathogens, but is potentially damaging and thus tightly regulated. The threshold for the activation of pro-inflammatory caspases is determined by the immediate stimulus in the context of previous signals. Pathogen, genetic and situational factors modulate this threshold, which determines the ability of the host to resist infection while minimizing harm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytosolic recognition of intracellular pathogens.
Figure 2: Evasion of cytosolic recognition.
Figure 3: Direct inhibition of pro-inflammatory molecular interactions.

Similar content being viewed by others

References

  1. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    CAS  PubMed  Google Scholar 

  2. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  4. von Moltke, J., Ayres, J. S., Kofoed, E. M., Chavarría-Smith, J. & Vance, R. E. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73–106 (2013).

    CAS  PubMed  Google Scholar 

  5. Kanneganti, T. D. Central roles of NLRs and inflammasomes in viral infection. Nat. Rev. Immunol. 10, 688–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Andrews-Polymenis, H. L., Bäumler, A. J., McCormick, B. A. & Fang, F. C. Taming the elephant: Salmonella biology, pathogenesis, and prevention. Infect. Immun. 78, 2356–2369 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogawa, M., Handa, Y., Ashida, H., Suzuki, M. & Sasakawa, C. The versatility of Shigella effectors. Nat. Rev. Microbiol. 6, 11–16 (2008).

    CAS  PubMed  Google Scholar 

  8. Navarro, L., Alto, N. M. & Dixon, J. E. Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr. Opin. Microbiol. 8, 21–27 (2005).

    CAS  PubMed  Google Scholar 

  9. Isaac, D. T. & Isberg, R. Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol. 9, 343–359 (2014).

    CAS  PubMed  Google Scholar 

  10. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilkins, C. & Gale, M. Recognition of viruses by cytoplasmic sensors. Curr. Opin. Immunol. 22, 41–47 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cummings, L. A., Barrett, S. L., Wilkerson, W. D., Fellnerova, I. & Cookson, B. T. FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J. Immunol. 174, 7929–7938 (2005).

    CAS  PubMed  Google Scholar 

  13. LaRock, D. L., Chaudhary, A. & Miller, S. I. Salmonellae interactions with host processes. Nat. Rev. Microbiol. 13, 191–205 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rebeil, R., Ernst, R. K., Gowen, B. B., Miller, S. I. & Hinnebusch, B. J. Variation in lipid A structure in the pathogenic yersiniae. Mol. Microbiol. 52, 1363–1373 (2004).

    CAS  PubMed  Google Scholar 

  15. Larock, C. N. & Cookson, B. T. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 12, 799–805 (2012). This study is the first account of a bacterial effector protein that inhibits the activation of caspase 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kobayashi, T. et al. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13, 570–583 (2013).

    CAS  PubMed  Google Scholar 

  17. Ray, C. A. et al. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. Cell 69, 597–604 (1992). This study is the first account of a viral protein that inhibits the activation of caspase 1.

    CAS  PubMed  Google Scholar 

  18. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002). This paper provides the first description of the inflammasome.

    CAS  PubMed  Google Scholar 

  19. Ting, J. P. et al. The NLR gene family: a standard nomenclature. Immunity 28, 285–287 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011). References 20 and 21 demonstrate the requirement for NAIPs to activate the NLRC4 inflammasome, and the ligand specificities for NAIP2, NAIP5, NAIP6 and human NAIP.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    CAS  PubMed  Google Scholar 

  22. Rayamajhi, M., Zak, D. E., Chavarria-Smith, J., Vance, R. E. & Miao, E. A. Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J. Immunol. 191, 3986–3989 (2013).

    CAS  PubMed  Google Scholar 

  23. Kortmann, J., Brubaker, S. W. & Monack, D. M. Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin. J. Immunol. 195, 815–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    CAS  PubMed  Google Scholar 

  25. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, A. & Wu, H. Structural mechanisms of inflammasome assembly. FEBS J. 282, 435–444 (2015).

    CAS  PubMed  Google Scholar 

  27. Nieva, J. L., Madan, V. & Carrasco, L. Viroporins: structure and biological functions. Nat. Rev. Microbiol. 10, 563–574 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fink, S. L., Bergsbaken, T. & Cookson, B. T. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc. Natl Acad. Sci. USA 105, 4312–4317 (2008). This study demonstrates a common effector pathway that leads to pyroptosis downstream from distinct stimuli and details the first microscopic observation of activated caspase 1 organized into inflammasome foci in the cytoplasm of pyroptotic cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38, 240–244 (2006).

    CAS  PubMed  Google Scholar 

  30. Levinsohn, J. L. et al. Anthrax lethal factor cleavage of NLRP1 is required for activation of the inflammasome. PLoS Pathog. 8, e1002638 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Cirelli, K. M. et al. Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii. PLoS Pathog. 10, e1003927 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Bruey, J. M. et al. Bcl-2 and Bcl-XL regulate pro-inflammatory caspase-1 activation by interaction with NALP1. Cell 129, 45–56 (2007).

    CAS  PubMed  Google Scholar 

  33. Van Opdenbosch, N. et al. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat. Commun. 5, 3209 (2014).

    PubMed  Google Scholar 

  34. Guey, B., Bodnar, M., Manié, S. N., Tardivel, A. & Petrilli, V. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc. Natl Acad. Sci. USA 111, 17254–17259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Finger, J. N. et al. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J. Biol. Chem. 287, 25030–25037 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pothlichet, J. et al. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog. 9, e1003256 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kerur, N. et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe 9, 363–375 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Needham, B. D. & Trent, M. S. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat. Rev. Microbiol. 11, 467–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013). References 39 and 40 show that cytoplasmic LPS from bacteria that escape the vacuole activates caspase 11-dependent pyroptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aachoui, Y. et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975–978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Knodler, L. A. et al. Non-canonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249–256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    CAS  PubMed  Google Scholar 

  43. Gurung, P. et al. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J. Biol. Chem. 287, 34474–34483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011). This study demonstrates that activated caspase 11 causes pyroptosis, but requires caspase 1, NLRP3 and ASC for the production of mature IL-1β.

    CAS  PubMed  Google Scholar 

  45. Rathinam, V. A. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by Gram-negative bacteria. Cell 150, 606–619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Broz, P. et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490, 288–291 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pilla, D. M. et al. Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. Proc. Natl Acad. Sci. USA 111, 6046–6051 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Meunier, E. et al. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509, 366–370 (2014).

    CAS  PubMed  Google Scholar 

  49. Barton, G. M. & Kagan, J. C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9, 535–542 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009). This study demonstrates the priming (transcriptional upregulation) of the NLRP3 inflammasome through the NFκB pathway.

    CAS  PubMed  Google Scholar 

  51. Henry, T., Brotcke, A., Weiss, D. S., Thompson, L. J. & Monack, D. M. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med. 204, 987–994 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. DeYoung, K. L. et al. Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 15, 453–457 (1997).

    CAS  PubMed  Google Scholar 

  53. Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    CAS  PubMed  Google Scholar 

  54. Sims, J. E. & Smith, D. E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10, 89–102 (2010).

    CAS  PubMed  Google Scholar 

  55. Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213–223 (2011).

    CAS  PubMed  Google Scholar 

  56. Dinarello, C. A., Simon, A. & van der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633–652 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B. & Matsuura, M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect. Immun. 70, 4092–4098 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Montminy, S. W. et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat. Immunol. 7, 1066–1073 (2006).

    CAS  PubMed  Google Scholar 

  59. Vladimer, G. I. et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37, 96–107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, Y. et al. LPS remodeling is an evolved survival strategy for bacteria. Proc. Natl Acad. Sci. USA 109, 8716–8721 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. de Jong, M. F., Rolán, H. G. & Tsolis, R. M. Innate immune encounters of the (Type) 4th kind: Brucella. Cell. Microbiol. 12, 1195–1202 (2010).

    CAS  PubMed  Google Scholar 

  62. Toman, R. et al. Physicochemical characterization of the endotoxins from Coxiella burnetii strain Priscilla in relation to their bioactivities. BMC Biochem. 5, 1 (2004).

    PubMed  PubMed Central  Google Scholar 

  63. Semper, R. P. et al. Helicobacter pylori-induced IL-1β secretion in innate immune cells is regulated by the NLRP3 inflammasome and requires the Cag pathogenicity island. J. Immunol. 193, 3566–3576 (2014).

    CAS  PubMed  Google Scholar 

  64. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11, 385–393 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, D. J., Park, J. H., Franchi, L., Backert, S. & Núñez, G. The Cag pathogenicity island and interaction between TLR2/NOD2 and NLRP3 regulate IL-1β production in Helicobacter pylori infected dendritic cells. Eur. J. Immunol. 43, 2650–2658 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dotson, R. J. et al. Repression of inflammasome by Francisella tularensis during early stages of infection. J. Biol. Chem. 288, 23844–23857 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Andersen-Nissen, E. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl Acad. Sci. USA 102, 9247–9252 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Terwagne, M. et al. Innate immune recognition of flagellin limits systemic persistence of Brucella. Cell. Microbiol. 15, 942–960 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stecher, B. et al. Motility allows S. Typhimurium to benefit from the mucosal defence. Cell. Microbiol. 10, 1166–1180 (2008). References 69, 75 and 76 demonstrate the specific mechanisms that enable S . Typhimurium to benefit from the environment in the inflamed gut.

    CAS  PubMed  Google Scholar 

  70. Galán, J. E. & Curtiss, R. Cloning and molecular characterization of genes whose products allow Salmonella Typhimurium to penetrate tissue culture cells. Proc. Natl Acad. Sci. USA 86, 6383–6387 (1989).

    PubMed  PubMed Central  Google Scholar 

  71. Cummings, L. A., Wilkerson, W. D., Bergsbaken, T. & Cookson, B. T. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol. Microbiol. 61, 795–809 (2006). This study demonstrates the heterogeneous expression of flagellar genes in Salmonella spp. both in vitro and in vivo , and the downregulation of fliC at systemic sites during infection.

    CAS  PubMed  Google Scholar 

  72. Stewart, M. K., Cummings, L. A., Johnson, M. L., Berezow, A. B. & Cookson, B. T. Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. Proc. Natl Acad. Sci. USA 108, 20742–20747 (2011). This study demonstrates that the control of heterogeneous flagellar gene expression in Salmonella spp. enables these species to evade the activation of caspase 1 in systemic tissues during infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Stewart, M. K. & Cookson, B. T. Mutually repressing repressor functions and multi-layered cellular heterogeneity regulate the bistable Salmonella fliC census. Mol. Microbiol. 94, 1272–1284 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Iyoda, S., Kamidoi, T., Hirose, K., Kutsukake, K. & Watanabe, H. A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb. Pathog. 30, 81–90 (2001).

    CAS  PubMed  Google Scholar 

  75. Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl Acad. Sci. USA 108, 17480–17485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Laughlin, R. C. et al. Spatial segregation of virulence gene expression during acute enteric infection with Salmonella enterica serovar Typhimurium. mBio 5, e00946-13 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin-1β via Ipaf. Nat. Immunol. 7, 569–575 (2006). This study shows that the Salmonella -induced caspase 1-dependent pyroptosis of macrophages is mediated by cytosolic flagellin and requires NLRC4.

    CAS  PubMed  Google Scholar 

  79. Miao, E. A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 107, 3076–3080 (2010). This study finds that the SPI-1 T3SS rod protein PrgJ in Salmonella spp., but not the SPI-2 T3SS rod protein SsaI, activates caspase 1 in an NLRC4-dependent manner; full virulence requires that SsaI not be detected by NLRC4. The authors identify a specific rod protein amino acid motif that correlates with the activation of caspase 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000). The first mechanistic description showing that caspase 1-dependent macrophage cell death, later termed pyroptosis, is readily distinguishable from apoptosis.

    CAS  PubMed  Google Scholar 

  81. Fass, E. & Groisman, E. A. Control of Salmonella pathogenicity island-2 gene expression. Curr. Opin. Microbiol. 12, 199–204 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dalebroux, Z. D. & Miller, S. I. Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr. Opin. Microbiol. 17, 106–113 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pujol, C. & Bliska, J. B. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect. Immun. 71, 5892–5899 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Parkhill, J. et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 (2001).

    CAS  PubMed  Google Scholar 

  86. Kapatral, V., Olson, J. W., Pepe, J. C., Miller, V. L. & Minnich, S. A. Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes. Mol. Microbiol. 19, 1061–1071 (1996).

    CAS  PubMed  Google Scholar 

  87. Chen, T. H. & Elberg, S. S. Scanning electron microscopic study of virulent Yersinia pestis and Yersinia pseudotuberculosis type 1. Infect. Immun. 15, 972–977 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Brodsky, I. E. et al. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7, 376–387 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dewoody, R. S., Merritt, P. M. & Marketon, M. M. Regulation of the Yersinia type III secretion system: traffic control. Front. Cell. Infect. Microbiol. 3, 4 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. Zwack, E. E. et al. Inflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD. mBio 6, e02095-14 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Lee, S. H., Stehlik, C. & Reed, J. C. Cop, a caspase recruitment domain-containing protein and inhibitor of caspase-1 activation processing. J. Biol. Chem. 276, 34495–34500 (2001).

    CAS  PubMed  Google Scholar 

  92. Druilhe, A., Srinivasula, S. M., Razmara, M., Ahmad, M. & Alnemri, E. S. Regulation of IL-1β generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ. 8, 649–657 (2001).

    CAS  PubMed  Google Scholar 

  93. Atianand, M. K. & Harton, J. A. Uncoupling of Pyrin-only protein 2 (POP2)-mediated dual regulation of NF-κB and the inflammasome. J. Biol. Chem. 286, 40536–40547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Annand, R. R. et al. Caspase-1 (interleukin-1β-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9. Biochem. J. 342, 655–665 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, J., Yin, H. L. & Yuan, J. Flightless-I regulates pro-inflammatory caspases by selectively modulating intracellular localization and caspase activity. J. Cell Biol. 181, 321–333 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dinarello, C. A., Novick, D., Kim, S. & Kaplanski, G. Interleukin-18 and IL-18 binding protein. Front. Immunol. 4, 289 (2013).

    PubMed  PubMed Central  Google Scholar 

  97. Sutterwala, F. S. et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204, 3235–3245 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cunha, L. D. et al. Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA. Nat. Commun. 6, 10205 (2015).

    CAS  PubMed  Google Scholar 

  99. Dorfleutner, A. et al. A Shope fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes 35, 685–694 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Johnston, J. B. et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23, 587–598 (2005).

    CAS  PubMed  Google Scholar 

  101. Rahman, M. M. & McFadden, G. Myxoma virus lacking the pyrin-like protein M013 is sensed in human myeloid cells by both NLRP3 and multiple Toll-like receptors, which independently activate the inflammasome and NF-κB innate response pathways. J. Virol. 85, 12505–12517 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Silverman, G. A. et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem. 276, 33293–33296 (2001).

    CAS  PubMed  Google Scholar 

  103. Garcia-Calvo, M. et al. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273, 32608–32613 (1998).

    CAS  PubMed  Google Scholar 

  104. Haller, S. L., Peng, C., McFadden, G. & Rothenburg, S. Poxviruses and the evolution of host range and virulence. Infect. Genet. Evol. 21, 15–40 (2014).

    CAS  PubMed  Google Scholar 

  105. Dobó, J., Swanson, R., Salvesen, G. S., Olson, S. T. & Gettins, P. G. Cytokine response modifier a inhibition of initiator caspases results in covalent complex formation and dissociation of the caspase tetramer. J. Biol. Chem. 281, 38781–38790 (2006).

    PubMed  Google Scholar 

  106. Melo-Silva, C. R. et al. The ectromelia virus SPI-2 protein causes lethal mousepox by preventing NK cell responses. J. Virol. 85, 11170–11182 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Turner, P. C. et al. Myxoma virus Serp2 is a weak inhibitor of granzyme B and interleukin-1β-converting enzyme in vitro and unlike CrmA cannot block apoptosis in cowpox virus-infected cells. J. Virol. 73, 6394–6404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stennicke, H. R., Ryan, C. A. & Salvesen, G. S. Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem. Sci. 27, 94–101 (2002).

    CAS  PubMed  Google Scholar 

  109. Ishimwe, E., Hodgson, J. J., Clem, R. J. & Passarelli, A. L. Reaching the melting point: degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination. Virology 479480, 637–649 (2015).

    PubMed  Google Scholar 

  110. Gerlic, M. et al. Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation. Proc. Natl Acad. Sci. USA 110, 7808–7813 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gregory, S. M. et al. Discovery of a viral NLR homolog that inhibits the inflammasome. Science 331, 330–334 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Komune, N., Ichinohe, T., Ito, M. & Yanagi, Y. Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1β secretion. J. Virol. 85, 13019–13026 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, I. Y. & Ichinohe, T. Response of host inflammasomes to viral infection. Trends Microbiol. 23, 55–63 (2015).

    CAS  PubMed  Google Scholar 

  114. Marc, D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J. Gen. Virol. 95, 2594–2611 (2014).

    CAS  PubMed  Google Scholar 

  115. Stasakova, J. et al. Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1β and 18. J. Gen. Virol. 86, 185–195 (2005).

    CAS  PubMed  Google Scholar 

  116. Xiang, Y. & Moss, B. IL-18 binding and inhibition of interferon-γ induction by human poxvirus-encoded proteins. Proc. Natl Acad. Sci. USA 96, 11537–11542 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Born, T. L. et al. A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J. Immunol. 164, 3246–3254 (2000).

    CAS  PubMed  Google Scholar 

  118. Esteban, D. J., Nuara, A. A. & Buller, R. M. Interleukin-18 and glycosaminoglycan binding by a protein encoded by variola virus. J. Gen. Virol. 85, 1291–1299 (2004).

    CAS  PubMed  Google Scholar 

  119. Smith, V. P., Bryant, N. A. & Alcamí, A. Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J. Gen. Virol. 81, 1223–1230 (2000).

    CAS  PubMed  Google Scholar 

  120. Xiang, Y. & Moss, B. Correspondence of the functional epitopes of poxvirus and human interleukin-18-binding proteins. J. Virol. 75, 9947–9954 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nazarian, S. H. et al. Yaba monkey tumor virus encodes a functional inhibitor of interleukin-18. J. Virol. 82, 522–528 (2008).

    CAS  PubMed  Google Scholar 

  122. Krumm, B., Meng, X., Wang, Z., Xiang, Y. & Deng, J. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein. PLoS Pathog. 8, e1002876 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Spriggs, M. K. et al. Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71, 145–152 (1992).

    CAS  PubMed  Google Scholar 

  124. Sivaraman, V., Pechous, R. D., Stasulli, N. M., Miao, E. A. & Goldman, W. E. Yersinia pestis activates both IL-1β and IL-1 receptor antagonist to modulate lung inflammation during pneumonic plague. PLoS Pathog. 11, e1004688 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. Qu, Y. et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490, 539–542 (2012).

    CAS  PubMed  Google Scholar 

  126. Juliana, C. et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 287, 36617–36622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yen, H., Sugimoto, N. & Tobe, T. Enteropathogenic Escherichia coli uses NleA to inhibit NLRP3 inflammasome activation. PLoS Pathog. 11, e1005121 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Fink, S. L. & Cookson, B. T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8, 1812–1825 (2006). This study shows that membrane pore formation mediates cellular lysis during pyroptosis.

    CAS  PubMed  Google Scholar 

  129. Bergsbaken, T., Fink, S. L., den Hartigh, A. B., Loomis, W. P. & Cookson, B. T. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J. Immunol. 187, 2748–2754 (2011). This study shows that lysosome exocytosis during pyroptosis releases antimicrobial molecules, and that the process of lysosome exocytosis is distinct from that of the release of pro-inflammatory cytokines.

    CAS  PubMed  Google Scholar 

  130. Lotze, M. T. & Tracey, K. J. High-mobility group box1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331–342 (2005).

    CAS  PubMed  Google Scholar 

  131. Doz, E. et al. Cigarette smoke-induced pulmonary inflammation is TLR4/MYD88 and IL-1R1/MYD88 signaling dependent. J. Immunol. 180, 1169–1178 (2008).

    CAS  PubMed  Google Scholar 

  132. Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. & Zychlinsky, A. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 30, 459–489 (2012).

    CAS  PubMed  Google Scholar 

  133. Berends, E. T., Kuipers, A., Ravesloot, M. M., Urbanus, R. T. & Rooijakkers, S. H. Bacteria under stress by complement and coagulation. FEMS Microbiol. Rev. 38, 1146–1171 (2014).

    CAS  PubMed  Google Scholar 

  134. Karmakar, M., Sun, Y., Hise, A. G., Rietsch, A. & Pearlman, E. Cutting edge: IL-1β processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1. J. Immunol. 189, 4231–4235 (2012).

    CAS  PubMed  Google Scholar 

  135. Franklin, B. S. et al. The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nat. Immunol. 15, 727–737 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Barker, J. R. et al. The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol. Microbiol. 74, 1459–1470 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Burkinshaw, B. J. & Strynadka, N. C. Assembly and structure of the T3SS. Biochim. Biophys. Acta 1843, 1649–1663 (2014).

    CAS  PubMed  Google Scholar 

  139. Sun, Y. H., Rolán, H. G. & Tsolis, R. M. Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J. Biol. Chem. 282, 33897–33901 (2007). This study demonstrates the SPI-1 T3SS-dependent translocation of flagellin from Salmonella spp. into the cytosol of infected macrophages.

    CAS  PubMed  Google Scholar 

  140. Molofsky, A. B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med. 203, 1093–1104 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 775–808 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Byrne, B. G., Dubuisson, J. F., Joshi, A. D., Persson, J. J. & Swanson, M. S. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. mBio 4, e00620-12 (2013).

    PubMed  PubMed Central  Google Scholar 

  143. Shi, C. S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972). The first description of apoptosis as a pathway that leads to cell death, the Greek origins and correct pronunciation of apoptosis, the recognition of other forms of cell death or pathways that lead to cell death, the first description of the term 'necrosis' to describe dead cells and the end state that results from the execution of cell death pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bergsbaken, T. & Cookson, B. T. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation. J. Leukoc. Biol. 86, 1153–1158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Monack, D. M., Mecsas, J., Ghori, N. & Falkow, S. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc. Natl Acad. Sci. USA 94, 10385–10390 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ruckdeschel, K. et al. Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect. Immun. 65, 4813–4821 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, Y. & Bliska, J. B. Role of Toll-like receptor signaling in the apoptotic response of macrophages to Yersinia infection. Infect. Immun. 71, 1513–1519 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Haase, R. et al. A dominant role of Toll-like receptor 4 in the signaling of apoptosis in bacteria-faced macrophages. J. Immunol. 171, 4294–4303 (2003).

    CAS  PubMed  Google Scholar 

  151. Bergsbaken, T. & Cookson, B. T. Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 3, e161 (2007). This study demonstrates that the activation state of macrophages is a crucial parameter that controls the use of cell death pathways in response to infection with Yersinia spp.

    PubMed  PubMed Central  Google Scholar 

  152. Levine, B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159–162 (2005).

    CAS  PubMed  Google Scholar 

  153. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    CAS  PubMed  Google Scholar 

  154. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    CAS  PubMed  Google Scholar 

  155. Schnaith, A. et al. Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J. Biol. Chem. 282, 2695–2706 (2007).

    CAS  PubMed  Google Scholar 

  156. Huang, J. & Brumell, J. H. Bacteria-autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12, 101–114 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Stewart, M. K. & Cookson, B. T. Non-genetic diversity shapes infectious capacity and host resistance. Trends Microbiol. 20, 461–466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Knodler, L. A. et al. Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc. Natl Acad. Sci. USA 107, 17733–17738 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the US National Institutes of Health and apologize to those colleagues whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad T. Cookson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Pattern recognition receptors

(PRRs). Host proteins that recognize pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). PRRs often specifically bind to pathogen-derived molecules, such as lipopolysaccharide.

Pathogen-associated molecular patterns

(PAMPs). Pathogen-derived molecules that are recognized by pattern recognition receptors (PRRs).

Damage-associated molecular patterns

(DAMPs). The mammalian immune system has evolved to recognize certain host-derived molecules as hallmarks of cellular damage when these molecules are detected outside of their usual cellular compartment.

Caspase

A cysteine protease that cleaves after an aspartic acid residue and initiates and executes cell death programmes. All caspases are produced as catalytically inactive zymogens and generally require cleavage for activity. Pro-inflammatory caspases include caspase 1, caspase 4, caspase 5, caspase 11 and caspase 12, and are associated with pyroptosis and the maturation of the cytokines interleukin-1β (IL-1β) and IL-18.

Caspase activation and recruitment domain

(CARD). Homotypic interactions between CARDs mediate the binding of caspase 1 to other CARD-containing proteins, such as apoptosis-associated speck-like protein containing a CARD (ASC).

Type III injectisome secretion systems

(T3SSs). A syringe-like organelle through which molecules can be translocated from the interior of a bacterium to the host cell cytosol. The periplasmic portion of this channel is thought to be formed of the rod protein, whereas the extracellular portion of the syringe shaft is a homopolymer of the needle protein.

Flagellin

Monomeric protein subunit of the bacterial flagellum.

Pyrin domain

(PYD). Homotypic interactions between PYDs mediate the binding of apoptosis-associated speck-like protein containing a CARD (ASC) to other PYD-containing proteins, such as NBD-, LRR- and pyrin domain-containing 3 (NLRP3), absent in melanoma 2 (AIM2) and interferon-γ-inducible protein 16 (IFI16).

Type I IFN responses

Type I interferons (IFNα and IFNβ) are produced and secreted in response to the recognition of pathogen-associated molecular patterns (PAMPs) by most Toll-like receptors (TLRs) and by numerous intracellular nucleic acid receptors. The binding of type I IFNs to their cognate receptor on infected and neighbouring cells activates the transcription of hundreds of interferon stimulated genes (ISGs), which inhibit viral replication and spread, induce apoptosis in cells that are infected, and modulate adaptive immunity.

Serine protease inhibitors

(Serpins). Serpins share specific tertiary structural characteristics and inhibit serine proteases through a suicide substrate mechanism in which the serpin forms a covalent bond with the protease.

Chick embryo chorioallantoic membrane

A vascular membrane found in the amniote egg that is used for the isolation, propagation and study of some viruses.

Reassorted

The genome of influenza virus is composed of eight segments of negative-sense single-stranded RNA. Reassortment of the genome occurs when segments from different influenza strains are packaged together into a single virion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, M., Cookson, B. Evasion and interference: intracellular pathogens modulate caspase-dependent inflammatory responses. Nat Rev Microbiol 14, 346–359 (2016). https://doi.org/10.1038/nrmicro.2016.50

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.50

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology