Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The biliary tree—a reservoir of multipotent stem cells

Abstract

The biliary tree is composed of intrahepatic and extrahepatic bile ducts, lined by mature epithelial cells called cholangiocytes, and contains peribiliary glands deep within the duct walls. Branch points, such as the cystic duct, perihilar and periampullar regions, contain high numbers of these glands. Peribiliary glands contain multipotent stem cells, which self-replicate and can differentiate into hepatocytes, cholangiocytes or pancreatic islets, depending on the microenvironment. Similar cells—presumably committed progenitor cells—are found in the gallbladder (which lacks peribiliary glands). The stem and progenitor cell characteristics indicate a common embryological origin for the liver, biliary tree and pancreas, which has implications for regenerative medicine as well as the pathophysiology and oncogenesis of midgut organs. This Perspectives article describes a hypothetical model of cell lineages starting in the duodenum and extending to the liver and pancreas, and thought to contribute to ongoing organogenesis throughout life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Embryological development of the liver, pancreas and biliary tree is triggered by endodermal proliferation.
Figure 2: Peribiliary glands in the hepatopancreatic ampulla.
Figure 3: Stem cell niches in the intrahepatic and extrahepatic biliary tree.
Figure 4: Proposed maturational cell lineages in the biliary tree.

Similar content being viewed by others

References

  1. Roskams, T. A. et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 39, 1739–1745 (2004).

    PubMed  Google Scholar 

  2. Alvaro, D. et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology 132, 415–431 (2007).

    CAS  PubMed  Google Scholar 

  3. Xia, X., Francis, H., Glaser, S., Alpini, G. & LeSage, G. BIle acid interactions with cholangiocytes. World J. Gastroenterol. 12, 3553–3563 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Marzioni, M. et al. Ca2+ dependent cytoprotective effects of ursodeoxycholic and tauroursodexycholic acid on the biliary epithelium in a rat model of cholestatis and loss of bile ducts. Am. J. Pathol. 168, 398–409 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ueno, Y. et al. Evaluation of differential gene expression by microarray analysis in small and large cholangiocytes isolated from normal mice. Liver Int. 23, 449–459 (2003).

    CAS  PubMed  Google Scholar 

  6. LeSage, G. D. et al. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver. Am. J. Physiol. 276, G1289–G1301 (1999).

    CAS  PubMed  Google Scholar 

  7. Nakanuma, Y., Hoso, M., Sanzen, T. & Sasaki, M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc. Res. Tech. 38, 552–570 (1997).

    CAS  PubMed  Google Scholar 

  8. Alpini, G. et al. Molecular and functional heterogeneity of cholangiocytes from rat liver after bile duct ligation. Am. J. Physiol. 272, G289–G297 (1997).

    CAS  PubMed  Google Scholar 

  9. Glaser, S. S. et al. Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Lab. Invest. 89, 456–469 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson, J. W. & Leduc, E. H. Role of cholangioles in restoration of the liver of the mouse after dietary injury. J. Pathol. Bacteriol. 76, 441–449 (1958).

    CAS  PubMed  Google Scholar 

  11. De Alwis, N., Hudson, G., Burt, A. D., Day, C. P. & Chinnery, P. F. Human liver stem cells originate from the canals of Hering. Hepatology 50, 992–993 (2009).

    PubMed  Google Scholar 

  12. Navarro-Alvarez, N., Soto-Gutierrez, A. & Kobayashi, N. Hepatic stem cells and liver development. Method Mol. BIol. 640, 181–236 (2010).

    CAS  Google Scholar 

  13. Saxena, R., Theise, N. D. & Crawford, J. M. Microanatomy of the human liver—exploring the hidden interfaces. Hepatology 30, 1339–1346 (1999).

    CAS  PubMed  Google Scholar 

  14. Saxena, R. & Theise, N. Canals of Hering: recent insights and current knowledge. Semin. Liver Dis. 24, 43–48 (2004).

    PubMed  Google Scholar 

  15. Turner, R. et al. Hepatic stem cells and maturational liver lineage biology. Hepatology 53, 1035–1045 (2011).

    CAS  PubMed  Google Scholar 

  16. Schmelzer, E. et al. Human hepatic stem cells from fetal and postnatal donors. J. Exp. Med. 204, 1973–1987 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lozoya, O. A. et al. Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials 32, 7389–7402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Y. et al. Lineage restriction of hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology 53, 293–305 (2011).

    CAS  PubMed  Google Scholar 

  19. Wang, Y. et al. Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates. Hepatology 52, 1443–1454 (2010).

    PubMed  Google Scholar 

  20. McClelland, R., Wauthier, E., Tallheden, T., Reid, L. M. & Hsu, E. In situ labeling and magnetic resonance imaging of transplanted human hepatic stem cells. Mol. Imaging Biol. 13, 911–922 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. Alpini, G. et al. Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes. Hepatology 34, 868–876 (2001).

    CAS  PubMed  Google Scholar 

  22. LeSage, E. G. et al. Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct-ligated rats. Gastroenterology 117, 191–199 (1999).

    CAS  PubMed  Google Scholar 

  23. Glaser, S. et al. Heterogeneity of the intrahepatic biliary epithelium. World J. Gastroenterol. 12, 3523–3536 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Alpini, G. et al. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology 110, 1636–1643 (1996).

    CAS  PubMed  Google Scholar 

  25. Mancinelli, R. et al. Novel evidence for CaMK1-dependent differentiation of small cholangiocytes into functional large cholangiocytes following gamma aminobutyric acid (GABA) treatment. Gastroenterology 136, A-800 (2009).

    Google Scholar 

  26. Zhang, L., Theise, N., Chua, M. & Reid, L. M. The stem cell niche of human livers: symmetry between liver development and liver regeneration. Hepatology 48, 1598–1607 (2008).

    CAS  PubMed  Google Scholar 

  27. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    CAS  PubMed  Google Scholar 

  28. Schmelzer, E. & Reid, L. M. Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors. Eur. J.Gastroenterol. Hepatol. 21, 1191–1198 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmelzer, E., Wauthier, E. & Reid, L. M. The phenotypes of pluripotent human hepatic progenitors. Stem Cells 24, 1852–1858 (2006).

    CAS  PubMed  Google Scholar 

  30. Kubota, H. & Reid, L. M. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigens. Proc. Natl Acad. Sci. USA 97, 12132–12137 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cardinale, V. et al. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes and pancreatic islets. Hepatology 54, 2159–2172 (2011).

    CAS  PubMed  Google Scholar 

  32. Shin, S. et al. Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev. 25, 1185–1192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, L. et al. In vitro transdifferentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl Acad. Sci. USA 99, 8078–8083 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuver, R., Savard, C. E., Lee, S. K., Haigh, W. G. & Lee, S. P. Murine gallbladder epithelial cells can differentiate into hepatocyte-like cells in vitro. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G944–G955 (2007).

    CAS  PubMed  Google Scholar 

  35. Aikawa, M. et al. Regeneration of extrahepatic bile duct--possibility to clinical application by recognition of the regenerative process. J. Smooth Muscle Res. 43, 211–218 (2007).

    PubMed  Google Scholar 

  36. Eberhard, D., Tosha, D. & Slack, J. M. Origin of pancreatic endocrine cells from biliary duct epithelium. Cell. Mol. Life Sci. 65, 3467–3480 (2008).

    CAS  PubMed  Google Scholar 

  37. Spence, J. R. et al. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells Dev. Cell 17, 62–74 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, C. S. et al. Characterization of an in vitro differentiation assay for pancreatic-like cell development from murine embryonic stem cells: detailed gene expression analysis. Assay Drug Dev. Technol. 9, 403–419 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet. 43, 34–41 (2011).

    CAS  PubMed  Google Scholar 

  40. Turner, W. S. et al. Human hepatoblast phenotype maintained by hyaluronan hydrogels. J. Biomed. Mater. Res. B Appl. Biomater. 82, 156–168 (2007).

    PubMed  Google Scholar 

  41. Turner, W. S. et al. Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells 26, 1547–1555 (2008).

    CAS  PubMed  Google Scholar 

  42. Dor, Y., Brown, J., Martinez, O. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    CAS  PubMed  Google Scholar 

  43. Bonner-Weir, S. et al. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr. Diabetes 5, 16–22 (2004).

    PubMed  Google Scholar 

  44. Strobel, O. et al. Pancreatic duct glands are distinct ductal compartments that react to chronic Injury and mediate Shh-induced metaplasia. Gastroenterology 138, 1166–1177 (2010).

    PubMed  Google Scholar 

  45. Smukler, S. R. et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8, 281–293 (2011).

    CAS  PubMed  Google Scholar 

  46. Zhao, M. et al. Evidence for the presence of stem cell-like progenitor cells in human adult pancreas. J. Endocrinol. 195, 407–414 (2007).

    CAS  PubMed  Google Scholar 

  47. Seaberg, R. M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol. 22, 1115–1124 (2004).

    CAS  PubMed  Google Scholar 

  48. Carpino, G. et al. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J. Anat. 220, 186–199 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Tan, C. E. & Moscoso, G. J. The developing human biliary system at the porta hepatis level between 11 and 25 weeks of gestation: a way to understanding biliary atresia. Part 2. Pathol. Int. 44, 600–610 (1994).

    CAS  PubMed  Google Scholar 

  50. Rochefort, N. L. & Konnerth, A. Genetically encoded calcium sensors come of age. Nat. Methods 5, 761–762 (2008).

    CAS  PubMed  Google Scholar 

  51. Beloussov, L. V. & Gordon, R. Preface: Developmental morphodynamics—bridging the gap between the genome and embryo physics. Int. J. Dev. Biol. 50, 79–80 (2006).

    Google Scholar 

  52. Spitz, L. Choledochal cyst. Surg. Gynecol. Obstet. 147, 444–452 (1978).

    CAS  PubMed  Google Scholar 

  53. Terada, T. & Nakanuma, Y. Development of human intrahepatic peribiliary glands. Histological, keratin immunohistochemical, and mucus histochemical analyses. Lab. Invest. 68, 261–269 (1993).

    CAS  PubMed  Google Scholar 

  54. Terada, T., Kida, T. & Nakanuma, Y. Extrahepatic peribiliary glands express α-amylase isozymes, trypsin and pancreatic lipase: an immunohistochemical analysis. Hepatology 18, 803–808 (1993).

    CAS  PubMed  Google Scholar 

  55. Terada, T. & Nakanuma, Y. Pancreatic lipase is a useful phenotypic marker of intrahepatic large and septal bile ducts, peribiliary glands, and their malignant counterparts. Mod. Pathol. 6, 419–426 (1993).

    CAS  PubMed  Google Scholar 

  56. Katayanagi, K., Kono, N. & Nakanuma, Y. Isloation, culture and characterization of biliary epithelial cells from different anatomical levels of the intrahepatic and extrahepatic biliary tree from a mouse. Liver 18, 90–98 (1998).

    CAS  PubMed  Google Scholar 

  57. Nakanuma, Y., Katayanagi, K., Terada, T. & Saito, K. Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions. J. Gastroenterol. Hepatol. 9, 75–79 (1994).

    CAS  PubMed  Google Scholar 

  58. Terada, T. & Nakanuma, Y. Expression of pancreatic enzymes (α-amylase, trypsinogen, and lipase) during human liver development and maturation. Gastroenterology 108, 1236–1245 (1995).

    CAS  PubMed  Google Scholar 

  59. Song, S. Y. et al. Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor α. Gastroenterology 117, 1416–1426 (1999).

    CAS  PubMed  Google Scholar 

  60. Nakanuma, Y., Sasaki, M., Terada, T. & Harada, K. Intrahepatic peribiliary glands of humans. II. Pathological spectrum. J. Gastroenterolol. Hepatol. 9, 80–86 (1994).

    CAS  Google Scholar 

  61. Wandzioch, E. & Zaret, K. S. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science 324, 1707–1710 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    Google Scholar 

  63. Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  PubMed  Google Scholar 

  64. Dutton, J. R. et al. β cells occur naturally in extrahepatic bile ducts of mice. J. Cell Sci. 120, 239–245 (2007).

    CAS  PubMed  Google Scholar 

  65. Youson, J. H. & Al-Mahrouki, A. Ontogenetic and phylogenetic development of the endocrine pancreas (islet organ) in fish. Gen. Comp. Endocrinol. 116, 303–335 (1999).

    CAS  PubMed  Google Scholar 

  66. Fukuda, A. et al. Ectopic pancreas formation in Hes1 -knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J. Clin. Invest. 116, 1484–1493 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lammert, E., Brown, J. & Melton, D. A. Notch gene expression during pancreatic organogenesis. Mech. Dev. 94, 199–203 (2000).

    CAS  PubMed  Google Scholar 

  68. Kim, W., Shin, Y. K., Kim, B. J. & Egan, J. M. Notch signaling in pancreatic endocrine cell and diabetes. Biochem. Biophys. Res. Commun. 392, 247–251, (2010).

    CAS  PubMed  Google Scholar 

  69. Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R. & Nakanishi, S. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and enhancer of split. Genes Dev. 6, 2620–2634 (1992).

    CAS  PubMed  Google Scholar 

  70. Sumazaki, R. et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat. Genet. 36, 83–87 (2004).

    CAS  PubMed  Google Scholar 

  71. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA 97, 1607–1611 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Terada, T., Kato, M., Horie, S., Endo, K. & Kitamura, Y. Expression of panceratic α-amylase protein and messenger RNA in hilar primitive bile ducts and hepatocytes during human fetal liver organogenesis: an immunohistochemical and in situ hybridization study. Liver 18, 313–319 (1998).

    CAS  PubMed  Google Scholar 

  73. Antoniou, A. et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 136, 2325–2333 (2009).

    PubMed  Google Scholar 

  74. Carpentier, R. et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141, 1432–1438 (2011).

    CAS  PubMed  Google Scholar 

  75. Khan, A. A. et al. Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transplant. 19, 409–418 (2010).

    PubMed  Google Scholar 

  76. Wolf, H. K., Burchette Jr, J. L., Garcia, J. A. & Michalopoulos, G. Exocrine pancreatic tissue in human liver: a metaplastic process? Am. J. Surg. Pathol. 14, 590–595 (1990).

    CAS  PubMed  Google Scholar 

  77. Clouston, A. D. et al. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology 41, 809–818 (2005).

    CAS  PubMed  Google Scholar 

  78. Kuwahara, R. et al. The hepatic stem cell niche: identification by label retaining cell assay. Hepatology 47, 1994–2002 (2008).

    PubMed  Google Scholar 

  79. Alvaro, D., Gigliozzi, A. & Attili, A. F. Regulation and deregulation of cholangiocyte proliferation. J. Hepatol. 33, 333–340 (2000).

    CAS  PubMed  Google Scholar 

  80. Roskams, T. A., Libbrecht, L. & Desmet, V. J. Progenitor cells in diseased human liver. Semin. Liver Dis. 23, 385–396 (2003).

    CAS  PubMed  Google Scholar 

  81. Miyatsuka, T. et al. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem. Biophys. Res. Commun. 310, 1017–1025 (2003).

    CAS  PubMed  Google Scholar 

  82. Habener, J. F., Kemp, D. M. & Thomas, M. K. Minireview: transcriptional regulation in pancreatic development. Endocrinology 146, 1025–1034 (2005).

    CAS  PubMed  Google Scholar 

  83. Drucker, D. J. Glucagon-like peptides, regulators of cell proliferation, differentiation and apoptosis. Mol. Endocrinol. 17, 161–171 (2003).

    CAS  PubMed  Google Scholar 

  84. Delise, J. C. et al. Pdx-1 or Pdx-1-VP16 protein transduction induces β-cell expression in liver-stem WB cells. BMC Res. Notes 2, 3 (2009).

    Google Scholar 

  85. Yechoor, V. et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev. Cell 16, 358–373 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kurumaya, H., Ohta, G. & Nakanuma, Y. Endocrine cells in the intrahepatic biliary tree in normal livers and hepatolithiasis. Arch. Pathol. Lab. Med. 113, 143–147 (1989).

    CAS  PubMed  Google Scholar 

  87. Bahadir, B. et al. Ectopic pancreas associated with choledochal cyst and multiseptate gallbladder. Pediatr. Dev. Pathol. 9, 312–315 (2006).

    PubMed  Google Scholar 

  88. Hoang, M. P., Murakata, L. A., Padilla-Rodriguez, A. L. & Albores-Saavedra, J. Metaplastic lesions of the extrahepatic bile ducts: a morphologic and immunohistochemical study. Mod. Pathol. 14, 1119–1125 (2001).

    CAS  PubMed  Google Scholar 

  89. Terada, T. & Nakanuma, Y. Pathologic observations of intrahepatic peribiliary glands in 1,000 consecutive autopsy livers: IV. hyperplasia of intramural and extramural glands. Hum. Pathol. 23, 483–490 (1992).

    CAS  PubMed  Google Scholar 

  90. Fujioka, Y. et al. Multiple hilar cysts of the liver in patients with alcoholic cirrhosis: report of three cases. J. Gastroenterol. Hepatol. 12, 137–143 (1997).

    CAS  PubMed  Google Scholar 

  91. Meng, F. et al. Role of colony stimulating factors in biliary remodeling during liver regeneration. Hepatology 55, 209–221 (2011).

    Google Scholar 

  92. Woo, H. G., Park, E. S., Thorgeirsson, S. S. & Kim, Y. J. Exploring genomic profiles of hepatocellular carcinoma. Mol. Carcinog. 50, 235–243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Woo, H. G. et al. Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology 140, 1063–1070 (2011).

    CAS  PubMed  Google Scholar 

  94. Ji, J. et al. Identification of a conserved microRNA-181 family by genome-wide screening as a critical player in hepatic cancer stem cells. Hepatology 50, 472–480 (2009).

    CAS  PubMed  Google Scholar 

  95. Yamashita, Y. et al. Wnt/β-catenin signaling regulates cancer initiating cells (EpCAM+ AFP+) with stem cell features and metastatic activities in hepatocellular carcinoma. Gastroenterology 136, 1012–1024 (2009).

    CAS  PubMed  Google Scholar 

  96. Hughes, N. R., Pairojkul, C., Royce, S. G., Clouston, A. & Bhathal, P. S. Liver fluke-associated and sporadic cholangiocarcinoma: an immunohistochemical study of bile duct, peribiliary gland and tumour cell phenotypes. J. Clin. Pathol. 59, 1073–1078 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Roskams, T. et al. Parathyroid hormone-related peptide expression in primary and metastatic liver tumors. Histopathology 23, 519–525 (1993).

    CAS  PubMed  Google Scholar 

  98. Komuta, M. et al. Clinicopathological study on cholangiocellular carcinoma suggesting hepatic progenitor cell origins. Hepatology 47, 1544–1556 (2008).

    CAS  PubMed  Google Scholar 

  99. Christa, L. et al. Hepatocarcinoma-intestine-pancreas/pancreatic associated protein (HIP/PAP) is expressed and secreted by proliferating ductules as well as by hepatocarcinoma and cholangiocarcinoma cells. Am. J. Pathol. 155, 1525–1533 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Roskams, T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 25, 3818–3822 (2006).

    CAS  PubMed  Google Scholar 

  101. Nakanuma, Y. et al. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J. Hepatol. 2, 419–427 (2010).

    PubMed  PubMed Central  Google Scholar 

  102. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    CAS  PubMed  Google Scholar 

  103. Borowiak, M. & Melton, D. How to make β cells. Curr. Opin. Cell Biol. 21, 727–732 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonner-Weir, S. & Weir, G. C. New sources of pancreatic β cells. Nat. Biotechnol. 23, 857–861 (2005).

    CAS  PubMed  Google Scholar 

  105. Oliver, G. et al. Prox1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev. 44, 3–16 (1993).

    CAS  PubMed  Google Scholar 

  106. Burke, Z. & Oliver, G. Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mech. Dev. 118, 147–155 (2002).

    CAS  PubMed  Google Scholar 

  107. Wang, J. et al. Prox1 activity controls pancreas morphogenesis and participates in the production of 'secondary transition' pancreatic endocrine cells. Dev. Biol. 286, 182–194 (2005).

    CAS  PubMed  Google Scholar 

  108. de Santa Barbera, P., van den Brink, G. R. & Roberts, D. J. Development and differentiation of the intestinal epithelium. Cell. Mol. Life Sci. 60, 1322–1332 (2003).

    Google Scholar 

  109. Roberts, D. J. et al. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121, 3163–3174 (1995).

    CAS  PubMed  Google Scholar 

  110. Roberts, D. J., Smith, D. M., Goff, D. J. & Tabin, C. J. Epithelial–mesenchymal signaling during regionalization of the chick gut. Development 125, 2791–2801 (1998).

    CAS  PubMed  Google Scholar 

  111. Kim, S. K. & Melton D. A. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc. Natl Acad. Sci. USA 95, 13036–13041 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Apelqvist, A., Ahlgren, U. & Edlund, H. Sonic hedgehog directs specialised mesoderm differentiaion in the intestine and pancreas. Curr. Biol. 7, 801–804 (1997).

    CAS  PubMed  Google Scholar 

  113. Cirullie, V. et al. Antigen Ep-CAM mediates cell–cell adhesion of pancreatic epithelial cells: morphoregulatory roles in pancreatic islet development. J. Cell Biol. 140, 1519–1534 (1998).

    Google Scholar 

  114. Hayes, A. et al. Chondroitin sulfate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells. J. Histochem. Cytochem. 56, 125–138 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zaret, K. S. & Grompe, M. Generation and regeneration of cells of the liver and pancreas. Science 322, 1490–1494 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Couvelard, A. et al. Expression of integrins during liver organogenesis in humans. Hepatology 27, 839–847 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Mendel for providing the original artwork for Figures 1 and 3 in this article. We also thank Giacomo Lanzoni, Luca Inverardi and Juan Dominez-Bendala for help with proofreading the manuscript, particularly sections on pancreatic progenitors. V. Cardinale received a scholarship from Sapienza University of Rome and research funding for his studies at University of North Carolina, NC, USA. Authors' research at University of North Carolina has been supported by sponsorship agreements with Vesta Therapeutics, Vertex Pharmaceuticals, GigaCyte Biotech, a grant from the North Carolina Biotechnology Center and funds from the Lineberger Cancer Center. D. Alvaro, V. Cardinale, E. Gaudio and G. Carpino have received grants from Agenzia Regionale del Lazio per Trapianti e Patologie connesse and from FIRB (Fondo per gli Investimenti della Ricerca di Base (RBAP10Z7FS_001 and RBAP10Z7FS_004). E. Gaudio and D. Alvaro were supported by MIUR (Ministero dell'Istruzione, dell'Universite della Ricerca) grants PRIN#2007, prot.2007HPT7BA_001 and PRIN# 2009X84L84_002, and Federate Athenaeum funds from the University Sapienza of Rome.

Author information

Authors and Affiliations

Authors

Contributions

The equal first authors, V. Cardinale and Y. Wang contributed to researching information, discussions of content, writing and editing the manuscript. The equal senior authors (E. Gaudio, L. M. Reid and D. Alvaro) also participated in researching information, discussions of content, writing and editing this article. G. Carpino contributed to researching information, content discussions, editing and writing the article. G. Alpini wrote a section and edited the manuscript. G. Mendel contributed to editing the article before submission.

Corresponding author

Correspondence to Domenico Alvaro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardinale, V., Wang, Y., Carpino, G. et al. The biliary tree—a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol 9, 231–240 (2012). https://doi.org/10.1038/nrgastro.2012.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing