Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transposable elements and the epigenetic regulation of the genome

Key Points

  • Overlapping gene silencing mechanisms function to epigenetically repress transposable elements (TEs), including chromatin and DNA modification as well as RNAi.

  • TEs are a major component of constitutive heterochromatin at the centromere and telomere, and the regulation of these TEs is required for proper chromosome function.

  • TEs can function as the nucleation centers for facultative heterochromatin, as well as acting as boundaries to the spread of gene silencing.

  • Epialleles are formed due to the proximity of a gene to a TE, and the epigenetic regulation that the TE recruits.

  • TEs could have served as the building blocks for epigenetic phenomena such as X-chromosome inactivation, gene imprinting and V(D)J recombination.

  • The epigenetic control of transposable elements has had an important role in both organism and genome evolution.

  • How differing epigenetic control of TEs is established in genetically identical cells (variegation) remains a major question in understanding how TEs influence the genome.

Abstract

Overlapping epigenetic mechanisms have evolved in eukaryotic cells to silence the expression and mobility of transposable elements (TEs). Owing to their ability to recruit the silencing machinery, TEs have served as building blocks for epigenetic phenomena, both at the level of single genes and across larger chromosomal regions. Important progress has been made recently in understanding these silencing mechanisms. In addition, new insights have been gained into how this silencing has been co-opted to serve essential functions in 'host' cells, highlighting the importance of TEs in the epigenetic regulation of the genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of transposable element silencing.
Figure 2: The influence of transposable elements on gene expression.
Figure 3: The transposable element origins of V(D)J recombination.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Girard, L. & Freeling, M. Regulatory changes as a consequence of transposon insertion. Dev. Genet. 25, 291–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. McClintock, B. Components of action of the regulators Spm and Ac. Carnegie Inst. Wash. Year Book 64, 527–536 (1965).

    Google Scholar 

  4. Griffith, J. L. et al. Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. Genetics 164, 867–879 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vastenhouw, N. L. et al. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr. Biol. 13, 1311–1316 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Sijen, T. & Plasterk, R. H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314 (2003). This report demonstrates that the endogenous RNAi system functions to repress TE activity in a tissue- and developmentally specific manner.

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006). This report confirms the previous findings in non-mammalian eukaryotes that TEs are an important source and target of siRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, N. & Kazazian, H. H. Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nature Struct. Mol. Biol. 13, 763–771 (2006). This publication demonstrated that siRNAs are generated from TEs in human cells, as well as showing that the LINE1 antisense promoter is essential for the production of these siRNAs.

    Article  CAS  Google Scholar 

  10. Lippman, Z., May, B., Yordan, C., Singer, T. & Martienssen, R. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 1, e67 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gendrel, A. V., Lippman, Z., Yordan, C., Colot, V. & Martienssen, R. A. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297, 1871–1873 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet. 20, 116–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Woodcock, D. M., Lawler, C. B., Linsenmeyer, M. E., Doherty, J. P. & Warren, W. D. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J. Biol. Chem. 272, 7810–7816 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Bourc'his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004). This study provides evidence of the tissue-specific de novo methylation of retrotransposons in mammals, as well as demonstrating that this methylation is essential for viability.

    Article  CAS  PubMed  Google Scholar 

  16. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004). This study describes the microarray analysis of an entire chromosomal knob, its TE composition and its dependency on DNA methylation and chromatin remodelling.

    Article  CAS  PubMed  Google Scholar 

  17. Kato, M., Takashima, K. & Kakutani, T. Epigenetic control of CACTA transposon mobility in Arabidopsis thaliana. Genetics 168, 961–969 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan, Q., Cho, E., Lockett, S. & Muegge, K. Association of Lsh, a regulator of DNA methylation, with pericentromeric heterochromatin is dependent on intact heterochromatin. Mol. Cell. Biol. 23, 8416–8428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, J. et al. Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res. 32, 5019–5028 (2004). This work demonstrates that the SWI/SNF Lsh1 gene regulates only repetitive DNA such as TEs, as well as showing the large amount of the genome that is mis-expressed when TE silencing is lost.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martienssen, R. A., Zaratiegui, M. & Goto, D. B. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet. 21, 450–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Irvine, D. V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science 313, 1134–1137 (2006). This report demonstrates that the spread of chromatin modifications is dependent on read-through transcription and the catalytic activity of argonaute.

    Article  CAS  PubMed  Google Scholar 

  23. Hansen, K. R. et al. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol. Cell. Biol. 25, 590–601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mochizuki, K. & Gorovsky, M. A. Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev. 14, 181–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, e104 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002). This is the first correlation between the TE-produced longer class of siRNAs in plants and their role in DNA methylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi, Y. et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 1008–1012 (2006).

    Article  PubMed  Google Scholar 

  28. Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Huettel, B. et al. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J. 25, 2828–2836 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. 19, 2030–2040 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nature Genet. 37, 761–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Li, C. F. et al. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126, 93–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Kanno, T. et al. A SNF2-like protein facilitates dynamic control of DNA methylation. EMBO Rep. 6, 649–655 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Cao, X. & Jacobsen, S. E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 12, 1138–1144 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Weinberg, M. S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12, 256–262 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Castro, J. P. & Carareto, C. M. Drosophila melanogaster P transposable elements: mechanisms of transposition and regulation. Genetica 121, 107–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Reiss, D., Josse, T., Anxolabehere, D. & Ronsseray, S. aubergine mutations in Drosophila melanogaster impair P cytotype determination by telomeric P elements inserted in heterochromatin. Mol. Genet. Genomics 272, 336–343 (2004). This report was the first to link an argonaute gene and RNA-based silencing to the trans silencing signal in TE cytotype control.

    Article  CAS  PubMed  Google Scholar 

  41. Kavi, H. H., Fernandez, H. R., Xie, W. & Birchler, J. A. RNA silencing in Drosophila. FEBS Lett. 579, 5940–5949 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Jensen, S., Gassama, M. P. & Heidmann, T. Taming of transposable elements by homology-dependent gene silencing. Nature Genet. 21, 209–212 (1999). This important report shows that a short, non-protein-encoding fragment of a TE can suppress hybrid dysgenesis and transposition activity when the full-length TE enters a naïve genome.

    Article  CAS  PubMed  Google Scholar 

  43. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006). This recent report shows that rasiRNAs are structurally different from siRNAs, and they associate with Piwi to silence TEs in D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  44. Sarot, E., Payen-Groschene, G., Bucheton, A. & Pelisson, A. Evidence for a Piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 166, 1313–1321 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol. 26, 2965–2975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klattenhoff, C. et al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev. Cell 12, 45–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709–1714 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).

    Article  PubMed  Google Scholar 

  51. Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell. 5, 337–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Schueler, M. G. & Sullivan, B. A. Structural and functional dynamics of human centromeric chromatin. Annu. Rev. Genomics Hum. Genet. 7, 301–313 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  55. Dawe, R. K. & Henikoff, S. Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci. 31, 662–669 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. De La Fuente, R. et al. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells. Nature Cell Biol. 8, 1448–1454 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Pidoux, A. L. & Allshire, R. C. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 569–579 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lippman, Z. & Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature 431, 364–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. May, B. P., Lippman, Z. B., Fang, Y., Spector, D. L. & Martienssen, R. A. Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet. 1, e79 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang, J., Birchler, J. A., Parrott, W. A. & Dawe, R. K. A molecular view of plant centromeres. Trends Plant Sci. 8, 570–575 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol. 6, 784–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005). This report confirms that, as in lower eukaryotes, dicer and small-RNA-based mechanisms are responsible for centromere condensation in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohzeki, J., Nakano, M., Okada, T. & Masumoto, H. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J. Cell Biol. 159, 765–775 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wong, L. H. & Choo, K. H. Evolutionary dynamics of transposable elements at the centromere. Trends Genet. 20, 611–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Martienssen, R. A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genet. 35, 213–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Pardue, M. L. et al. Two retrotransposons maintain telomeres in Drosophila. Chromosome Res. 13, 443–453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Casacuberta, E. & Pardue, M. L. RNA interference has a role in regulating Drosophila telomeres. Genome Biol. 7, 220 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Savitsky, M., Kwon, D., Georgiev, P., Kalmykova, A. & Gvozdev, V. Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes Dev. 20, 345–354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gonzalo, S. et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biol. 8, 416–424 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Schotta, G., Ebert, A., Dorn, R. & Reuter, G. Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin. Cell Dev. Biol. 14, 67–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Sun, F. L. et al. cis-acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol. Cell. Biol. 24, 8210–8220 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haynes, K. A., Caudy, A. A., Collins, L. & Elgin, S. C. Element 1360 and RNAi components contribute to HP1-dependent silencing of a pericentric reporter. Curr. Biol. 16, 2222–2227 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schotta, G., Ebert, A. & Reuter, G. SU(VAR)3–9 is a conserved key function in heterochromatic gene silencing. Genetica 117, 149–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Gaszner, M. & Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nature Rev. Genet. 7, 703–713 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Lei, E. P. & Corces, V. G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nature Genet. 38, 936–941 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Lyon, M. F. Do LINEs have a role in X-chromosome inactivation? J. Biomed. Biotechnol. 2006, 59746 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ross, M. T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cohen, D. E. et al. The DXPas34 repeat regulates random and imprinted X inactivation. Dev. Cell 12, 57–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I. & Whitelaw, E. Metastable epialleles in mammals. Trends Genet. 18, 348–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Jordan, I. K., Rogozin, I. B., Glazko, G. V. & Koonin, E. V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19, 68–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Romanish, M. T., Lock, W. M., de Lagemaat, L. N., Dunn, C. A. & Mager, D. L. Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet. 3, e10 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Garfinkel, D. J. Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet. Genome Res. 110, 63–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002). This paper reports the discovery that tissue-specific transcripts that are generated from the outward-reading antisense promoter of LINE1 express neighbouring genes in large numbers.

    Article  CAS  PubMed  Google Scholar 

  86. Hodgetts, R. B. & O'Keefe, S. L. The mutant phenotype associated with P-element alleles of the vestigial locus in Drosophila melanogaster may be caused by a readthrough transcript initiated at the P-element promoter. Genetics 157, 1665–1672 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nature Genet. 23, 314–318 (1999). This landmark report demonstrates that a mosaic coat-colour pattern is defined by the epigenetic state of a nearby TE, and that these epigenetic patterns are not fully erased when passed through meiosis, creating heritable patterns of epigenetic gene expression.

    Article  CAS  PubMed  Google Scholar 

  88. Blewitt, M. E., Vickaryous, N. K., Paldi, A., Koseki, H. & Whitelaw, E. Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet. 2, e49 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gaudet, F. et al. Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol. Cell. Biol. 24, 1640–1648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Matlik, K., Redik, K. & Speek, M. L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 2006, 71753 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Martienssen, R. & Baron, A. Coordinate suppression of mutations caused by Robertson's mutator transposons in maize. Genetics 136, 1157–1170 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Whitelaw, E. & Martin, D. I. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nature Genet. 27, 361–365 (2001). In this provocative commentary, it is suggested that the differential metastable epigenetic silencing of TEs that are scattered throughout the genome produce intraspecies diversity.

    Article  CAS  PubMed  Google Scholar 

  94. Walker, E. L. Paramutation of the r1 locus of maize is associated with increased cytosine methylation. Genetics 148, 1973–1981 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Stam, M., Belele, C., Dorweiler, J. E. & Chandler, V. L. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev. 16, 1906–1918 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Woodhouse, M. R., Freeling, M. & Lisch, D. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol. 4, e339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McGinnis, K. M., Springer, C., Lin, Y., Carey, C. C. & Chandler, V. Transcriptionally silenced transgenes in maize are activated by three mutations defective in paramutation. Genetics 173, 1637–1647 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Rubin, C. M., VandeVoort, C. A., Teplitz, R. L. & Schmid, C. W. Alu repeated DNAs are differentially methylated in primate germ cells. Nucleic Acids Res. 22, 5121–5127 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Allen, E. et al. High concentrations of long interspersed nuclear element sequence distinguish monoallelically expressed genes. Proc. Natl Acad. Sci. USA 100, 9940–9945 (2003). In this unique survey of the genome, LINE elements were found to be significantly associated with imprinted genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Greally, J. M. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc. Natl Acad. Sci. USA 99, 327–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Reik, W. & Lewis, A. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nature Rev. Genet. 6, 403–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Youngson, N. A., Kocialkowski, S., Peel, N. & Ferguson-Smith, A. C. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J. Mol. Evol. 61, 481–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Ono, R. et al. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics 73, 232–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Davis, E. et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol. 15, 743–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Chan, S. W., Zhang, X., Bernatavichute, Y. V. & Jacobsen, S. E. Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol. 4, e363 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kinoshita, T. et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303, 521–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Walter, J., Hutter, B., Khare, T. & Paulsen, M. Repetitive elements in imprinted genes. Cytogenet. Genome Res. 113, 109–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Sen, R. & Oltz, E. Genetic and epigenetic regulation of IgH gene assembly. Curr. Opin. Immunol. 18, 237–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Bolland, D. J. et al. Antisense intergenic transcription in V(D)J recombination. Nature Immunol. 5, 630–637 (2004).

    Article  CAS  Google Scholar 

  113. Kidwell, M. G. & Lisch, D. R. Transposable elements and host genome evolution. Trends Ecol. Evol. 15, 95–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Hickey, D. A. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101, 519–531 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, Q. & Dooner, H. K. Eukaryotic transposable elements and genome evolution special feature: remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc. Natl Acad. Sci. USA 103, 17644–17649 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boissinot, S., Davis, J., Entezam, A., Petrov, D. & Furano, A. V. Fitness cost of LINE-1 (L1) activity in humans. Proc. Natl Acad. Sci. USA 103, 9590–9594 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Seleme Mdel, C. et al. Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc. Natl Acad. Sci. USA 103, 6611–6616 (2006). This report demonstrates that there is a surprisingly high level of individual variation and TE-activity potential between humans.

    Article  CAS  Google Scholar 

  119. Deininger, P. L., Moran, J. V., Batzer, M. A. & Kazazian, H. H. Jr. Mobile elements and mammalian genome evolution. Curr. Opin. Genet. Dev. 13, 651–658 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Sandovici, I. et al. Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements. Hum. Mol. Genet. 14, 2135–2143 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Rangwala, S. H. et al. Meiotically stable natural epialleles of Sadhu, a novel Arabidopsis retroposon. PLoS Genet. 2, e36 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kazazian, H. H. Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Slotkin, R. K., Freeling, M. & Lisch, D. Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nature Genet. 37, 641–644 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Ronsseray, S., Josse, T., Boivin, A. & Anxolabehere, D. Telomeric transgenes and trans-silencing in Drosophila. Genetica 117, 327–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Axtell, M. J., Jan, C., Rajagopalan, R. & Bartel, D. P. A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Schlappi, M., Raina, R. & Fedoroff, N. Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. Cell 77, 427–437 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. McClintock, B. The significance of responses of the genome to challenge. Science 226, 792–801 (1984).

    Article  CAS  PubMed  Google Scholar 

  128. Capy, P., Gasperi, G., Biemont, C. & Bazin, C. Stress and transposable elements: co-evolution or useful parasites? Heredity 85, 101–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Allshire, R. C., Javerzat, J. P., Redhead, N. J. & Cranston, G. Position effect variegation at fission yeast centromeres. Cell 76, 157–169 (1994).

    Article  CAS  PubMed  Google Scholar 

  130. Kidwell, M. G. Reciprocal differences in female recombination associated with hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 30, 77–88 (1977).

    Article  CAS  PubMed  Google Scholar 

  131. Vieira, C., Aubry, P., Lepetit, D. & Biemont, C. A temperature cline in copy number for 412 but not roo/B104 retrotransposons in populations of Drosophila simulans. Proc. Biol. Sci. 265, 1161–1165 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Wolff, G. L., Kodell, R. L., Moore, S. R. & Cooney, C. A. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12, 949–957 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Cooney, C. A., Dave, A. A. & Wolff, G. L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132, 2393S–2400S (2002). This study demonstrates the surprising result that dietary supplementation of a methylation donor molecule heritably alters a TE-induced epiallele that confers coat colour in mice.

    Article  CAS  PubMed  Google Scholar 

  135. Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ivics, Z., Hackett, P. B., Plasterk, R. H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Miskey, C., Izsvak, Z., Plasterk, R. H. & Ivics, Z. The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res. 31, 6873–6881 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. An, W. et al. Active retrotransposition by a synthetic L1 element in mice. Proc. Natl Acad. Sci. USA 103, 18662–18667 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Biemont, C. & Vieira, C. What transposable elements tell us about genome organization and evolution: the case of Drosophila. Cytogenet. Genome Res. 110, 25–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Kidwell, M. G. Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Hawkins, J. S., Kim, H., Nason, J. D., Wing, R. A. & Wendel, J. F. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16, 1252–1261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Piegu, B. et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16, 1262–1269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Iida, S., Morita, Y., Choi, J. D., Park, K. I. & Hoshino, A. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Adv. Biophys. 38, 141–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Martienssen, R. A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293, 1070–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Kapitonov, V. V. & Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3, e181 (2005). This study provides the missing evidence of the TE-family origin of the RAG transposase proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize if relevant publications were not cited due to space constraints. R.K.S is supported by a postdoctoral fellowship from the US National Institutes of Health. Work in the authors' laboratory is supported by a grant from the National Institutes of Health to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Martienssen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Transposable elements

All mobile DNA segments in the genome, regardless of their mechanism of transposition.

Transpose

The movement of a genetic element from one location of the genome to another.

Autonomous element

A transposable element that produces all the proteins that are required for transposition.

Cryptic element

A transposable element that is epigenetically inactivated for a period of time and has lost the ability to mobilize.

Epigenetic

A heritable change that is not caused by a genetic mutation.

Non-autonomous element

A transposable element that does not produce the proteins required for transposition. These elements are dependent on the proteins produced by autonomous elements of the same element family to transpose.

Heterochromatin

The portion of interphase chromosomes that remains densely stained and condensed after cell division. Heterochromatic regions are generally gene poor, replicate late, and have a low level of transcription.

Imprinting

A gene is expressed from only one allele in a diploid organism, depending on the parent of origin.

Duplicative transposition

A mechanism of transposition that results in a copy of the element at both the excision and acceptor site. This can occur even after excision of the element by the process of gap repair.

Cut-and-paste transposition

A mechanism of transposition in which no copy of the element remains at the excision site.

Gap repair

A process whereby, after excision of a DNA transposon, the element can be copied back into the excision site from the template of the sister chromatid or homologous chromosome.

DNA transposon

Transposable elements that do not use a reverse-transcription step to integrate copies into the genome.

Terminal inverted repeat

Repeats that flank most DNA transposons and lie in an inverted orientation.

Retrotransposon

Transposable elements that use a reverse-transcription step to integrate copies into the genome. Also known as retroposons.

Presetting

Describes the inheritance of transposable-element

Position effect variegation

Unstable gene-expression patterns that are determined by the location of a gene.

LTR retrotransposon

Long terminal repeat retrotransposons are a type of retrotransposon that has repeats in a direct orientation at either end, in contrast with non-LTR retrotransposons.

Transposable element cycling

The transformation of a transposable element from an epigenetically inactive state to an active state, and back to an epigenetically inactive state, over the course of development or over multiple generations.

Polycomb group

A class of proteins, originally described in Drosophila melanogaster, the function of which is to maintain stable and heritable epigenetic repression.

non-LTR retrotransposon

A retrotransposon that is not flanked by long terminal repeats.

Constitutive heterochromatin

Heterochromatin that is heritable and is found at a particular locus at all times.

Facultative heterochromatin

Heterochromatin that switches to euchromatin at points during development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slotkin, R., Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8, 272–285 (2007). https://doi.org/10.1038/nrg2072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing