Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Hermann Joseph Muller, Evolutionist

Abstract

This essay is dedicated to the proposition that Hermann Joseph Muller, widely regarded as the greatest geneticist of the first half-century of the subject, was also one of the greatest evolutionists of this period. His Nobel Prize-winning work, which showed that radiation increases the mutation rate, is in every genetics textbook, and his prescient ideas have influenced almost every aspect of the discipline. Here I emphasize his less well-known contribution to the neo-Darwinian theory of evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Bypassing hybrid sterility.

References

  1. Muller, H. J. Artificial transmutation of the gene. Science 66, 84–87 (1927).

    Article  CAS  Google Scholar 

  2. Carlson, E. A. Genes, Radiation, and Society. The Life and Work of H. J. Muller (Cornell Univ. Press, Ithaca, New York 1981).

    Google Scholar 

  3. Muller, H. J. Studies in Genetics. The Selected Papers of H. J. Muller. (Indiana Univ. Press, Bloomington, 1962).

    Google Scholar 

  4. Crow, J. F. H. J. Muller's Role in Evolutionary Biology (ed. S. Sarkar) 83–105 (Kluwer Academic Publishers, The Netherlands, 1992).

    Google Scholar 

  5. Wilson, E. B. The Cell in Development and Heredity 3rd edn (Macmillan, New York, 1925).

    Google Scholar 

  6. Sturtevant, A. H. A History of Genetics (Harper and Row, New York, 1965).

    Google Scholar 

  7. Muller, H. J. The problem of genic modification. Zeit. ind. Abst.-und Vererb. (Suppl. 1) 234–260 (1927).

  8. Muller, H. J. Variation due to change in the individual gene. Am. Nat. 56, 32–50 (1922).

    Article  Google Scholar 

  9. Muller, H. J. The gene as the basis of life. Proc. Int. Cong. Plant Sci. 1, 897–921 (1929).

    Google Scholar 

  10. Muller, H. J. The gene. Pilgrim Trust Lecture. Proc. Roy. Soc. Lond. B 134, 1–37 (1947).

    Article  CAS  Google Scholar 

  11. Muller, H. J. Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors. Genetics 3, 422–499 (1918).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Altenburg, E. & Muller, H. J. The genetic basis of Truncate wing — an inconstant and modifiable character in Drosophila. Genetics 5, 1–59 (1920).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Muller, H. J. Bar duplication. Science 83, 528–530 (1936).

    Article  CAS  Google Scholar 

  14. Bridges, C. B. Salivary chromosome maps. J. Hered. 26, 60–64 (1935).

    Article  Google Scholar 

  15. Muller, H. J. Our load of mutations. Amer. J. Hum. Genet. 2, 111–176 (1950).

    CAS  PubMed  Google Scholar 

  16. Kondrashov, A. S. & Crow, J. F. King's formula for the mutation load with epistasis. Genetics 120, 853–856 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haldane, J. B. S. The effect of variation on fitness. Am. Nat. 71, 337–349 (1937).

    Article  Google Scholar 

  18. Morton, N. E., Crow, J. F. & Muller, H. J. An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl Acad. Sci. USA 42, 853–863 (1956).

    Article  Google Scholar 

  19. Muller, H. J. Some genetic aspects of sex. Am. Nat. 68, 138–188 (1932).

    Google Scholar 

  20. Fisher, R. A. The Genetical Theory of Natural Selection (The Clarendon Press, Oxford, 1930).

    Book  Google Scholar 

  21. Crow, J. F. & Kimura, M. Evolution in sexual and asexual populations. Am. Nat. 99, 439–450 (1965).

    Article  Google Scholar 

  22. Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamilton, W. D., Axelrod, R. & Tanase, T. Sexual reproduction as an adaptation to resist parasites. Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990).

    Article  CAS  Google Scholar 

  24. Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988).

    Article  CAS  Google Scholar 

  25. Crow, J. F. & Kimura, M. Efficiency of truncation selection. Proc. Natl Acad. Sci. USA 76, 396–399 (1979).

    Article  CAS  Google Scholar 

  26. Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 1, 2–9 (1964).

    Article  Google Scholar 

  27. Muller, H. J. & Pontocorvo, G. Recombinants between Drosophila species, the F1 hybrids of which are sterile. Nature 146, 199–200 (1940).

    Article  Google Scholar 

  28. Muller, H. J. Isolating mechanisms, evolution, and temperature. Biol. Symp. 6, 71–125 (1942).

    Google Scholar 

  29. Muller, H. J. Evidence of the precision of genetic adaptation. The Harvey Lectures 18, 165–229 (1950).

    Google Scholar 

  30. Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, New York, 1937).

    Google Scholar 

  31. Orr, H. A. Dobzhansky, Bateson, and the genetics of speciation. Genetics 144, 1331–1335 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gorman, M. & Baker, B. S. How flies make one equal to two. Dosage compensation in Drosophila. Trends Genet. 10, 376–380 (1994).

    Article  CAS  Google Scholar 

  33. Haldane, J. B. S. The Causes of Evolution (Harper, New York, 1932).

    Google Scholar 

  34. Hamilton, W. The genetical evolution of social behavior. J. Theor. Biol. 7, 1–52 (1964).

    Article  CAS  Google Scholar 

  35. Crow, J. F. & Aoki, K. Group selection for a polygenic behavioural trait: estimating the degree of population subdivision. Proc. Natl Acad. Sci. USA 81, 6073–6077 (1984).

    Article  CAS  Google Scholar 

  36. Muller, H. J. Out of the Night: A Biologist's View of the Future (Vanguard, New York, 1935).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Crow's homepage

Glossary

ALLOPATRIC SPECIATION

Formation of separate species in geographically isolated populations.

ANEUPLOID

Having an unbalanced number of chromosomes.

BRISTLE

Hair-like structures in Drosophila; in particular, those on the thorax.

EPISTASIS

An interaction between non-allelic genes, such that the joint phenotype differs from the one that would be produced if the two genes were acting independently.

INTER-LOCUS ADDITIVITY

Additive, or independent, effects of genes at different loci.

ISOLATING MECHANISM

Any mechanism (for example, sterility, inviability, refusal to mate) that prevents the exchange of genes between species that live in the same locality.

KIN SELECTION

Perpetuation of some of an individuals genes by aiding the survival and reproduction of near relatives.

MUTATION LOAD

The deleterious effect of mutation on the well-being of a population.

QUASI-TRUNCATION SELECTION

An approximation to 'truncation selection' (see Glossary definition) in which the threshold between the selected and non-selected trait is not sharp.

SALIVARY GLAND CHROMOSOMES

Giant, multiple-stranded chromosomes that are found in the salivary glands of the Drosophila genus.

SYMPATRIC SPECIATION

Species formation between populations in the same location.

TRUNCATION SELECTION

Selection in which all individuals with more than a certain number of mutations are eliminated, whereas those with fewer are retained.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crow, J. Hermann Joseph Muller, Evolutionist. Nat Rev Genet 6, 941–945 (2005). https://doi.org/10.1038/nrg1728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1728

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing