Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PTH receptor-1 signalling—mechanistic insights and therapeutic prospects

Key Points

  • Parathyroid hormone (PTH)/parathyroid hormone-related protein (PTHrP) receptor (PTHR1) mediates the biological actions of two endogenous ligands, PTH and PTHrP and has key roles in regulating blood calcium levels and tissue development

  • PTH and PTHrP interact with PTHR1 through similar, although not identical mechanisms, and preferentially stabilize distinct receptor conformations

  • Certain structurally distinct PTH and PTHrP ligand analogues, which stabilize distinct receptor conformations, induce altered signalling responses that differ in signal type and duration

  • Prolonged signalling by certain PTH ligand analogues correlates temporally with ligand–receptor complexes located in endosomes, which suggests mechanisms of signal generation and termination distinct from those described by traditional G-protein-coupled receptor models

  • Consideration of ligand-based mechanisms that control signal duration provide insight into the processes of receptor dysfunction, as wells as guidance for addressing PTHR1-related diseases

  • Identification and incorporation of specific structural features that promote or prevent long-lasting biological responses hold promise for the design of treatments for hypoparathyroidism and osteoporosis, respectively

Abstract

Parathyroid hormone/parathyroid hormone-related protein receptor (PTH/PTHrP type 1 receptor; commonly known as PTHR1) is a family B G-protein-coupled receptor (GPCR) that regulates skeletal development, bone turnover and mineral ion homeostasis. PTHR1 transduces stimuli from PTH and PTHrP into the interior of target cells to promote diverse biochemical responses. Evaluation of the signalling properties of structurally modified PTHR1 ligands has helped to elucidate determinants of receptor function and mechanisms of downstream cellular and physiological responses. Analysis of PTHR1 responses induced by structurally modified ligands suggests that PTHR1 can continue to signal through a G-protein-mediated pathway within endosomes. Such findings challenge the longstanding paradigm in GPCR biology that the receptor is transiently activated at the cell membrane, followed by rapid deactivation and receptor internalization. Evaluation of structurally modified PTHR1 ligands has further led to the identification of ligand analogues that differ from PTH or PTHrP in the type, strength and duration of responses induced at the receptor, cellular and organism levels. These modified ligands, and the biochemical principles revealed through their use, might facilitate an improved understanding of PTHR1 function in vivo and enable the treatment of disorders resulting from defects in PTHR1 signalling. This Review discusses current understanding of PTHR1 modes of action and how these findings might be applied in future therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Altered modes of cAMP signalling at PTHR1.
Figure 2: Distinct mechanisms of prolonged PTH analogue action in vivo.

Similar content being viewed by others

References

  1. Urena, P. et al. Parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acids are widely distributed in rat tissues. Endocrinology 133, 617–623 (1993).

    CAS  PubMed  Google Scholar 

  2. Vilardaga, J. P., Romero, G., Friedman, P. A. & Gardella, T. J. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell. Mol. Life Sci. 68, 1–13 (2011).

    CAS  PubMed  Google Scholar 

  3. Kousteni, S. & Bilezikian, J. P. The cell biology of parathyroid hormone in osteoblasts. Curr. Osteoporos. Rep. 6, 72–76 (2008).

    PubMed  Google Scholar 

  4. Jilka, R. L. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40, 1434–1446 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1257–1272 (2015).

    CAS  PubMed  Google Scholar 

  6. Tawfeek, H. A., Qian, F. & Abou-Samra, A. B. Phosphorylation of the receptor for PTH and PTHrP is required for internalization and regulates receptor signaling. Mol. Endocrinol. 16, 1–13 (2002).

    CAS  PubMed  Google Scholar 

  7. Lohse, M. J. Molecular mechanisms of membrane-receptor desensitization. Biochim. Biophys. Acta 1179, 171–188 (1993).

    CAS  PubMed  Google Scholar 

  8. Brown, E. M. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol. Rev. 71, 371–411 (1991).

    CAS  PubMed  Google Scholar 

  9. Habener, J. F., Rosenblatt, M. & Potts, J. T. Parathyroid hormone: biochemical aspects of biosynthesis, secretion, action, and metabolism. Physiol. Rev. 64, 985–1053 (1984).

    CAS  PubMed  Google Scholar 

  10. Cupp, M. E., Nayak, S. K., Adem, A. S. & Thomsen, W. J. Parathyroid hormone (PTH) and PTH-related peptide domains contributing to activation of different PTH receptor-mediated signaling pathways. J. Pharmacol. Exp. Ther. 345, 404–418 (2013).

    CAS  PubMed  Google Scholar 

  11. Dean, T. et al. Mechanisms of ligand binding to the PTH/PTHrP receptor: selectivity of a modified PTH(1–15) radioligand for GαS-coupled receptor conformations. Mol. Endocrinol. 20, 931–942 (2006).

    CAS  PubMed  Google Scholar 

  12. Horwitz, M. J. et al. Direct comparison of sustained infusion of human parathyroid hormone-related protein-(1–36) [HPTHrP-(1–36)] versus HPTH-(1–34) on serum calcium, plasma 1,25-dihydroxyvitamin D concentrations, and fractional calcium excretion in healthy human volunteers. J. Clin. Endocrinol. Metab. 88, 1603–1609 (2003).

    CAS  PubMed  Google Scholar 

  13. Abousamra, A. B. et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc. Natl Acad. Sci. USA 89, 2732–2736 (1992).

    CAS  Google Scholar 

  14. Singh, A. T., Gilchrist, A., Voyno-Yasenetskaya, T., Radeff-Huang, J. M. & Stern, P. H. Gα12/Gα13 subunits of heterotrimeric G proteins mediate parathyroid hormone activation of phospholipase D in UMR-106 osteoblastic cells. Endocrinology 146, 2171–2175 (2005).

    CAS  PubMed  Google Scholar 

  15. Syme, C. A., Friedman, P. A. & Bisello, A. Parathyroid hormone receptor trafficking contributes to the activation of extracellular signal-regulated kinases but is not required for regulation of cAMP signaling. J. Biol. Chem. 280, 11281–11288 (2005).

    CAS  PubMed  Google Scholar 

  16. Gesty-Palmer, D. et al. Distinct β-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J. Biol. Chem. 281, 10856–10864 (2006).

    CAS  PubMed  Google Scholar 

  17. Divieti, P., Geller, A. I., Suliman, G., Juppner, H. & Bringhurst, F. R. Receptors specific for the carboxyl-terminal region of parathyroid hormone on bone-derived cells: determinants of ligand binding and bioactivity. Endocrinology 146, 1863–1870 (2005).

    CAS  PubMed  Google Scholar 

  18. Toribio, R. E. et al. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. FASEB J. 24, 1947–1957 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. de Miguel, F. et al. The C-terminal region of PTHrP, in addition to the nuclear localization signal, is essential for the intracrine stimulation of proliferation in vascular smooth muscle cells. Endocrinology 142, 4096–4105 (2001).

    CAS  PubMed  Google Scholar 

  20. Miao, D. et al. Severe growth retardation and early lethality in mice lacking the nuclear localization sequence and C-terminus of PTH-related protein. Proc. Natl Acad. Sci. USA 105, 20309–20314 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bergwitz, C. et al. Full activation of chimeric receptors by hybrids between parathyroid hormone and calcitonin. Evidence for a common pattern of ligand–receptor interaction. J. Biol. Chem. 271, 26469–26472 (1996).

    CAS  PubMed  Google Scholar 

  22. Lee, C. et al. Role of the extracellular regions of the parathyroid hormone (PTH)/PTH-related peptide receptor in hormone binding. Endocrinology 135, 1488–1495 (1994).

    CAS  PubMed  Google Scholar 

  23. Gardella, T. J. et al. Determinants of [Arg2]PTH-(1–34) binding and signaling in the transmembrane region of the parathyroid hormone receptor. Endocrinology 135, 1186–1194 (1994).

    CAS  PubMed  Google Scholar 

  24. Luck, M. D., Carter, P. H. & Gardella, T. J. The (1–14) fragment of parathyroid hormone (PTH) activates intact and amino-terminally truncated PTH-1 receptors. Mol. Endocrinol. 13, 670–680 (1999).

    CAS  PubMed  Google Scholar 

  25. Caulfield, M. P. et al. The bovine renal parathyroid hormone (PTH) receptor has equal affinity for two different amino acid sequences: the receptor-binding domains of PTH and PTH-related protein are located within the 14–34 region. Endocrinology 127, 83–87 (1990).

    CAS  PubMed  Google Scholar 

  26. Jüppner, H. et al. The extracellular amino-terminal region of the parathyroid hormone (PTH)/PTH-related peptide receptor determines the binding affinity for carboxyl-terminal fragments of PTH-(1–34). Endocrinology 134, 879–884 (1994).

    PubMed  Google Scholar 

  27. Shimizu, M., Carter, P. & Gardella, T. Autoactivation of type 1 parathyroid hormone receptors containing a tethered ligand. J. Biol. Chem. 275, 19456–19460 (2000).

    CAS  PubMed  Google Scholar 

  28. Castro, M., Nikolaev, V. O., Palm, D., Lohse, M. J. & Vilardaga, J. P. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc. Natl Acad. Sci. USA 102, 16084–16089 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pioszak, A. A. & Xu, H. E. Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc. Natl Acad. Sci. USA 105, 5034–5039 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pioszak, A. A., Parker, N. R., Gardella, T. J. & Xu, H. E. Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. J. Biol. Chem. 284, 28382–28391 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Siu, F. Y. et al. Structure of the human glucagon class B G-protein-coupled receptor. Nature 499, 444–449 (2013).

    CAS  PubMed  Google Scholar 

  32. Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438–443 (2013).

    CAS  PubMed  Google Scholar 

  33. Hollenstein, K. et al. Insights into the structure of class B GPCRs. Trends Pharmacol. Sci. 35, 12–22 (2014).

    CAS  PubMed  Google Scholar 

  34. Shimizu, M., Potts, J. J. & Gardella, T. Minimization of parathyroid hormone: novel amino-terminal parathyroid hormone fragments with enhanced potency in activating the type-1 parathyroid hormone receptor. J. Biol. Chem. 275, 21836–21843 (2000).

    CAS  PubMed  Google Scholar 

  35. Goltzman, D., Peytremann, A., Callahan, E., Tregear, G. W. & Potts, J. T. Jr. Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues. J. Biol. Chem. 250, 3199–3203 (1975).

    CAS  PubMed  Google Scholar 

  36. Doppelt, S. H. et al. Inhibition of the in vivo parathyroid hormone-mediated calcemic response in rats by a synthetic hormone antagonist. Proc. Natl Acad. Sci. USA 83, 7557–7560 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chorev, M. et al. Modifications of position 12 in parathyroid hormone and parathyroid hormone related protein: toward the design of highly potent antagonists. Biochemistry 29, 1580–1586 (1990).

    PubMed  Google Scholar 

  38. Gardella, T. J. et al. Inverse agonism of amino-terminally truncated parathyroid hormone (PTH) and PTH-related peptide (PThrP) analogs revealed with constitutively active mutant PTH/PTHrP receptors. Endocrinology 137, 3936–3941 (1996).

    CAS  PubMed  Google Scholar 

  39. Bisello, A. et al. Selective ligand-induced stabilization of active and desensitized parathyroid hormone type 1 receptor conformations. J. Biol. Chem. 277, 38524–38530 (2002).

    CAS  PubMed  Google Scholar 

  40. Takasu, H., Gardella, T. J., Luck, M. D., Potts, J. T. & Bringhurst, F. R. Amino-terminal modifications of human parathyroid hormone (PTH) selectively alter phospholipase C signaling via the type 1 PTH receptor: implications for design of signal-specific PTH ligands. Biochemistry 38, 13453–13460 (1999).

    CAS  PubMed  Google Scholar 

  41. Gesty-Palmer, D. et al. A β-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci. Transl Med. 1, 1ra1 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. Wisler, J. W., Xiao, K., Thomsen, A. R. & Lefkowitz, R. J. Recent developments in biased agonism. Curr. Opin. Cell Biol. 27, 18–24 (2014).

    CAS  PubMed  Google Scholar 

  43. van der Lee, M. M. et al. β-arrestin-biased signaling of PTH analogs of the type 1 parathyroid hormone receptor. Cell Signal. 25, 527–538 (2013).

    CAS  PubMed  Google Scholar 

  44. Mahon, M. J. The parathyroid hormone receptorsome and the potential for therapeutic intervention. Curr. Drug Targets 13, 116–128 (2012).

    CAS  PubMed  Google Scholar 

  45. Mahon, M. J., Donowitz, M., Yun, C. C. & Segre, G. V. Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 417, 858–861 (2002).

    CAS  PubMed  Google Scholar 

  46. Wang, B. et al. Na/H exchanger regulatory factors control parathyroid hormone receptor signaling by facilitating differential activation of Gα protein subunits. J. Biol. Chem. 285, 26976–26986 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ardura, J. A. & Friedman, P. A. Regulation of G protein-coupled receptor function by Na+/H+ exchange regulatory factors. Pharmacol. Rev. 63, 882–900 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rajagopal, S., Rajagopal, K. & Lefkowitz, R. J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9, 373–386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Violin, J. D., Crombie, A. L., Soergel, D. G. & Lark, M. W. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol. Sci. 35, 308–316 (2014).

    CAS  PubMed  Google Scholar 

  50. Vilardaga, J. P., Gardella, T. J., Wehbi, V. L. & Feinstein, T. N. Non-canonical signaling of the PTH receptor. Trends Pharmacol. Sci. 33, 423–431 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Calebiro, D. et al. Persistent cAMP signals triggered by internalized G-protein-coupled receptors. PLoS Biol. 7, e1000172 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Feinstein, T. N. et al. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J. Biol. Chem. 288, 27849–27860 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    CAS  PubMed  Google Scholar 

  54. Andreassen, K. V. et al. Prolonged calcitonin receptor signaling by salmon, but not human calcitonin, reveals ligand bias. PLoS ONE 9, e92042 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Luttrell, L. M. Minireview: more than just a hammer: ligand 'bias' and pharmaceutical discovery. Mol. Endocrinol. 28, 281–294 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Horwitz, M. J., Tedesco, M. B., Gundberg, C., Garcia-Ocana, A. & Stewart, A. F. Short-term, high dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 88, 569–575 (2003).

    CAS  PubMed  Google Scholar 

  57. Horwitz, M. J. et al. Continuous PTH and PTHrP infusion causes suppression of bone formation and discordant effects on 1,25(OH)2 vitamin D. J. Bone Miner. Res. 20, 1792–1803 (2005).

    CAS  PubMed  Google Scholar 

  58. Horwitz, M. J. et al. A comparison of parathyroid hormone-related protein (1–36) and parathyroid hormone (1–34) on markers of bone turnover and bone density in postmenopausal women: the PrOP study. J. Bone Miner. Res. 28, 2266–2276 (2013).

    CAS  PubMed  Google Scholar 

  59. Hoare, S. R., Gardella, T. J. & Usdin, T. B. Evaluating the signal transduction mechanism of the parathyroid hormone 1 receptor. Effect of receptor-G-protein interaction on the ligand binding mechanism and receptor conformation. J. Biol. Chem. 276, 7741–7753 (2001).

    CAS  PubMed  Google Scholar 

  60. Dean, T., Vilardaga, J. P., Potts, J. T. Jr & Gardella, T. J. Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PThrP receptor. Mol. Endocrinol. 22, 156–166 (2008).

    CAS  PubMed  Google Scholar 

  61. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maeda, A. et al. Critical role of parathyroid hormone (PTH) receptor-1 phosphorylation in regulating acute responses to PTH. Proc. Natl Acad. Sci. USA 110, 5864–5869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Okazaki, M. et al. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proc. Natl Acad. Sci. USA 105, 16525–16530 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Swinney, D. C. Biochemical mechanisms of drug action: what does it take for success? Nat. Rev. Drug Discov. 3, 801–808 (2004).

    CAS  PubMed  Google Scholar 

  65. Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5, 730–739 (2006).

    CAS  PubMed  Google Scholar 

  66. Guo, D., Hillger, J. M., Ijzerman, A. P. & Heitman, L. H. Drug-target residence time—a case for G protein-coupled receptors. Med. Res. Rev. 34, 856–892 (2014).

    CAS  PubMed  Google Scholar 

  67. Gidon, A. et al. Endosomal GPCR signaling turned off by negative feedback actions of PKA and V-ATPase. Nat. Chem. Biol. 10, 707–709 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sonawane, N. D., Szoka, F. C. Jr & Verkman, A. S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine–DNA polyplexes. J. Biol. Chem. 278, 44826–44831 (2003).

    CAS  PubMed  Google Scholar 

  69. Hoare, S. R. & Usdin, T. B. Quantitative cell membrane-based radioligand binding assays for parathyroid hormone receptors. J. Pharmacol. Toxicol. Methods 41, 83–90 (1999).

    CAS  PubMed  Google Scholar 

  70. Luttrell, L. M. & Lefkowitz, R. J. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 115, 455–465 (2002).

    CAS  PubMed  Google Scholar 

  71. Tsvetanova, N. G. & von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat. Chem. Biol. 10, 1061–1065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Calebiro, D. & Maiellaro, I. cAMP signaling microdomains and their observation by optical methods. Front. Cell. Neurosci. 8, 350 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Baillie, G. S. Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J. 276, 1790–1799 (2009).

    CAS  PubMed  Google Scholar 

  74. Tsvetanova, N. G., Irannejad, R. & von Zastrow, M. G protein-coupled receptor (GPCR) signaling via heterotrimeric G. proteins from endosomes. J. Biol. Chem. 290, 6689–6696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Feinstein, T. N. et al. Retromer terminates the generation of cAMP by internalized PTH receptors. Nat. Chem. Biol. 7, 278–284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10, 609–622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hoffmann, R., Baillie, G. S., MacKenzie, S. J., Yarwood, S. J. & Houslay, M. D. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 18, 893–903 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wehbi, V. L. et al. Noncanonical GPCR signaling arising from a PTH receptor–arrestin–Gβγ complex. Proc. Natl Acad. Sci. USA 110, 1530–1535 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Goldstein, J. L., Brown, M. S., Anderson, R. G., Russell, D. W. & Schneider, W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Ann. Rev. Cell Biol. 1, 1–39 (1985).

    CAS  PubMed  Google Scholar 

  80. Vilardaga, J. P., Jean-Alphonse, F. G. & Gardella, T. J. Endosomal generation of cAMP in GPCR signaling. Nat. Chem. Biol. 10, 700–706 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Juppner, H., Schipani, E. & Silve, C. in Principles of Bone Biology, 3rd Edn Vol. 2 (eds Bilezikian, J. P., Raisz, L. G. & Martin, T. J.) 1431–1452 (Elsevier, 2008).

    Google Scholar 

  82. Chen, X. S. et al. Initial characterization of PTH-related protein gene-driven LacZ expression in the mouse. J. Bone Miner. Res. 21, 113–123 (2006).

    CAS  PubMed  Google Scholar 

  83. Lee, K., Deeds, J. D. & Segre, G. V. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology 136, 453–463 (1995).

    CAS  PubMed  Google Scholar 

  84. Juppner, H. et al. A G-protein linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254, 1024–1026 (1991).

    CAS  PubMed  Google Scholar 

  85. Jobert, A. S. et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J. Clin. Invest. 102, 34–40 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Couvineau, A. et al. PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum. Mol. Genet. 17, 2766–2775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Risom, L. et al. Identification of six novel PTH1R mutations in families with a history of primary failure of tooth eruption. PLoS ONE 8, e74601 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Schipani, E., Kruse, K. & Jüppner, H. A constitutively active mutant PTH–PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268, 98–100 (1995).

    CAS  PubMed  Google Scholar 

  89. Schipani, E. et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen's metaphyseal chondrodysplasia. N. Engl. J. Med. 335, 708–714 (1996).

    CAS  PubMed  Google Scholar 

  90. Duchatelet, S., Ostergaard, E., Cortes, D., Lemainque, A. & Julier, C. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum. Mol. Genet. 14, 1–5 (2005).

    CAS  PubMed  Google Scholar 

  91. Carter, P. et al. Selective and non-selective inverse agonists for constitutively active type-1 parathyroid hormone receptors: evidence for altered receptor conformations. Endocrinology 142, 1534–1545 (2001).

    CAS  PubMed  Google Scholar 

  92. Fraser, W. D. Hyperparathyroidism. Lancet 374, 145–158 (2009).

    CAS  PubMed  Google Scholar 

  93. Stewart, A. F. Clinical practice. Hypercalcemia associated with cancer. N. Engl. J. Med. 352, 373–379 (2005).

    CAS  PubMed  Google Scholar 

  94. Kukreja, S. C. et al. Antibodies to parathyroid hormone-related protein lower serum calcium in athymic mouse models of malignancy-associated hypercalcemia due to human tumors. J. Clin. Invest. 82, 1798–1802 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sato, K., Onuma, E., Yocum, R. C. & Ogata, E. Treatment of malignancy-associated hypercalcemia and cachexia with humanized anti-parathyroid hormone-related protein antibody. Semin. Oncol. 30, 167–173 (2003).

    CAS  PubMed  Google Scholar 

  96. Iguchi, H., Aramaki, Y., Maruta, S. & Takiguchi, S. Effects of anti-parathyroid hormone-related protein monoclonal antibody and osteoprotegerin on PTHrP-producing tumor-induced cachexia in nude mice. J. Bone Miner. Metab. 24, 16–19 (2006).

    CAS  PubMed  Google Scholar 

  97. Dresner-Pollak, R. et al. Evaluation in vivo of a potent parathyroid hormone antagonist: [Nle8,18, D-Trp12, Tyr34]bPTH(7–34)Nh2. J. Bone Miner. Res. 11, 1061–1065 (1996).

    CAS  PubMed  Google Scholar 

  98. Rosen, H. N. et al. The effect of PTH antagonist BIM-44002 on serum calcium and PTH levels in hypercalcemic hyperparathyroid patients. Calcif. Tissue Int. 61, 455–459 (1997).

    CAS  PubMed  Google Scholar 

  99. Klopocki, E. et al. Deletion and point mutations of PTHLH cause brachydactyly type E. Am. J. Hum. Genet. 86, 434–439 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shoback, D. Clinical Practice. Hypoparathyroidism. N. Engl. J. Med. 359, 391–403 (2008).

    CAS  PubMed  Google Scholar 

  101. Cusano, N. E., Rubin, M. R., Irani, D., Sliney, J. Jr & Bilezikian, J. P. Use of parathyroid hormone in hypoparathyroidism. J. Endocrinol. Invest. 36, 1121–1127 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mannstadt, M. et al. Efficacy and safety of recombinant human parathyroid hormone (1–84) in hypoparathyroidism (REPLACE): a double-blind, placebo-controlled, randomised, phase 3 study. Lancet Diabetes Endocrinol. 1, 275–283 (2013).

    CAS  PubMed  Google Scholar 

  103. Winer, K. K. et al. Synthetic human parathyroid hormone 1–34 replacement therapy: a randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J. Clin. Endocrinol. Metab. 97, 391–399 (2012).

    CAS  PubMed  Google Scholar 

  104. Cheloha, R. W., Maeda, A., Dean, T., Gardella, T. J. & Gellman, S. H. Backbone modification of a polypeptide drug alters duration of action in vivo. Nat. Biotechnol. 32, 653–655 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kawai, M., Moedder, U. I., Khosla, S. & Rosen, C. J. Emerging therapeutic opportunities for skeletal restoration. Nat. Rev. Drug Discov. 10, 141–156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Neer, R. M. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    CAS  PubMed  Google Scholar 

  107. Miller, P. D. Safety of parathyroid hormone for the treatment of osteoporosis. Curr. Osteoporos. Rep. 6, 12–16 (2008).

    PubMed  Google Scholar 

  108. Yang, D. et al. Contributions of parathyroid hormone (PTH)/PTH-related peptide receptor signaling pathways to the anabolic effect of PTH on bone. Bone 40, 1453–1461 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kraenzlin, M. E. & Meier, C. Parathyroid hormone analogues in the treatment of osteoporosis. Nat. Rev. Endocrinol. 7, 647–656 (2011).

    CAS  PubMed  Google Scholar 

  110. Potts, J. T. & Gardella, T. J. Progress, paradox, and potential: parathyroid hormone research over five decades. Ann. NY Acad. Sci. 1117, 196–208 (2007).

    CAS  PubMed  Google Scholar 

  111. Canalis, E., Giustina, A. & Bilezikian, J. P. Mechanisms of anabolic therapies for osteoporosis. N. Engl. J. Med. 357, 905–916 (2007).

    CAS  PubMed  Google Scholar 

  112. Polyzos, S. A., Makras, P., Efstathiadou, Z. & Anastasilakis, A. D. Investigational parathyroid hormone receptor analogs for the treatment of osteoporosis. Exp. Opin. Investigat. Drugs 24, 145–157 (2015).

    CAS  Google Scholar 

  113. Horwitz, M. J. et al. Parathyroid hormone-related protein for the treatment of postmenopausal osteoporosis: defining the maximal tolerable dose. J. Clin. Endocrinol. Metab. 95, 1279–1287 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Leder, B. Z. et al. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, ojennajn bone mineral density in postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab. 100, 697–706 (2015).

    CAS  PubMed  Google Scholar 

  115. Hattersley, G., Dean, T. & Gardella, T. J. Differential binding selectivity of abaloparatide (BA058) compared to PTH and PTHrP type 1 receptor conformations. Endocrine.org [online] (2014).

    Google Scholar 

Download references

Acknowledgements

R.W.C. was supported in part by a Biotechnology Training Grant from NIGMS (T32 GM008349). Work in the authors laboratories was supported by NIH grants R01-GM056414 (S.H.G.), RO1-DK087688, R01-DK102495 (J.-P.V.) and P01-DK11794 (T.J.G.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Thomas J. Gardella.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheloha, R., Gellman, S., Vilardaga, JP. et al. PTH receptor-1 signalling—mechanistic insights and therapeutic prospects. Nat Rev Endocrinol 11, 712–724 (2015). https://doi.org/10.1038/nrendo.2015.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing