Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circadian clock control of endocrine factors

Key Points

  • Various endocrine factors are known to exhibit time-of-day-dependent oscillations in both humans and animals

  • Endocrine factor rhythms are driven not only by environmental and behavioural influences, but also by intrinsic circadian clocks

  • Circadian dyssynchrony is associated with multiple pathologic states, including cardiometabolic diseases and cancer

  • Reinstatement of circadian synchrony through time-of-day-restricted feeding and pharmacologic strategies improves metabolic homeostasis

Abstract

Organisms experience dramatic fluctuations in demands and stresses over the course of the day. In order to maintain biological processes within physiological boundaries, mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors have an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 h period, but so too does responsiveness of target tissues to these signals or stimuli. Emerging evidence suggests that these daily endocrine oscillations do not occur solely in response to behavioural fluctuations associated with sleep–wake and feeding–fasting cycles, but are orchestrated by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks by genetic and/or environmental factors seems to precipitate numerous common disorders, including the metabolic syndrome and cancer. Collectively, these observations suggest that strategies designed to realign normal circadian rhythmicities hold potential for the treatment of various endocrine-related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The time of day at which circulating levels of key endocrine factors peak in humans.
Figure 2: Central and peripheral circadian clock control of endocrine factors.

Similar content being viewed by others

References

  1. Avram, A. M., Jaffe, C. A., Symons, K. V. & Barkan, A. L. Endogenous circulating ghrelin does not mediate growth hormone rhythmicity or response to fasting. J. Clin. Endocrinol. Metab. 90, 2982–2987 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Russell, W. et al. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J. Clin. Endocrinol. Metab. 93, 2300–2306 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Carroll, T., Raff, H. & Findling, J. W. Late-night salivary cortisol measurement in the diagnosis of Cushing's syndrome. Nat. Clin. Pract. Endocrinol. Metab. 4, 344–350 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Freeman, M. E., Kanyicska, B., Lerant, A. & Nagy, G. Prolactin: structure, function, and regulation of secretion. Physiol. Rev. 80, 1523–1631 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Walton, M. J. et al. A diurnal variation in testicular hormone production is maintained following gonadotrophin suppression in normal men. Clin. Endocrinol. 66, 123–129 (2007).

    CAS  Google Scholar 

  6. Goel, N. et al. Circadian rhythm profiles in women with night eating syndrome. J. Biol. Rhythms 24, 85–94 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Scheer, F. A. et al. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia 53, 2401–2405 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Borjigin, J., Zhang, L. S. & Calinescu, A. A. Circadian regulation of pineal gland rhythmicity. Mol. Cell. Endocrinol. 349, 13–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Dardente, H. Melatonin-dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J. Neuroendocrinol. 24, 249–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Rondanelli, M., Faliva, M. A., Perna, S. & Antoniello, N. Update on the role of melatonin in the prevention of cancer tumorigenesis and in the management of cancer correlates, such as sleep-wake and mood disturbances: review and remarks. Aging Clin. Exp. Res. 25, 499–510 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Slominski, R. M., Reiter, R. J., Schlabritz-Loutsevitch, N., Ostrom, R. S. & Slominski, A. T. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol. Cell. Endocrinol. 351, 152–166 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bouatia-Naji, N. et al. A variant near MTNR1b is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 41, 89–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez-Barcelo, E. J., Mediavilla, M. D. & Reiter, R. J. Clinical uses of melatonin in pediatrics. Int. J. Pediatr. 2011, 892624 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lewy, A. J., Lefler, B. J., Emens, J. S. & Bauer, V. K. The circadian basis of winter depression. Proc. Natl Acad. Sci. USA 103, 7414–7419 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dickmeis, T. Glucocorticoids and the circadian clock. J. Endocrinol. 200, 3–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Kalsbeek A, van Heerikhuize, J. J., Wortel, J. & Buijs, R. M. A diurnal rhythm of stimulatory input to the hypothalamo–pituitary–adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J. Neurosci. 16, 5555–5565 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gardi, J., Obal, F. Jr, Fang, J., Zhang, J. & Krueger, J. M. Diurnal variations and sleep deprivation-induced changes in rat hypothalamic GHRH and somatostatin contents. Am. J. Physiol. 277, R1339–R1344 (1999).

    CAS  PubMed  Google Scholar 

  18. Dimaraki, E. V., Jaffe, C. A., Bowers, C. Y., Marbach, P. & Barkan, A. L. Pulsatile and nocturnal growth hormone secretions in men do not require periodic declines of somatostatin. Am. J. Physiol. Endocrinol. Metab. 285, E163–E170 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi, Y. Essential roles of growth hormone (GH) and insulin-like growth factor-I (IGF-I) in the liver. Endocr. J. 59, 955–962 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Jaffe, C. A. et al. Regulatory mechanisms of growth hormone secretion are sexually dimorphic. J. Clin. Invest. 102, 153–164 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Villadolid, M. C. et al. Twenty-four hour plasma, GH, FSH and LH profiles in patients with Turner's syndrome. Endocrinol. Jpn 35, 71–81 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Goji, K. Pulsatile characteristics of spontaneous growth hormone (GH) concentration profiles in boys evaluated by an ultrasensitive immunoradiometric assay: evidence for ultradian periodicity of GH secretion. J. Clin. Endocrinol. Metab. 76, 667–670 (1993).

    CAS  PubMed  Google Scholar 

  23. Gavrila, A. et al. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J. Clin. Endocrinol. Metab. 88, 2838–2843 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Maeda, N., Funahashi, T. & Shimomura, I. Cardiovascular-metabolic impact of adiponectin and aquaporin. Endocr. J. 60, 251–259 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Begg, D. P. & Woods, S. C. Interactions between the central nervous system and pancreatic islet secretions: a historical perspective. Adv. Physiol. Educ. 37, 53–60 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Bolli, G. B. et al. Demonstration of a dawn phenomenon in normal human volunteers. Diabetes 33, 1150–1153 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Bolli, G. B. & Gerich, J. E. The “dawn phenomenon”—a common occurrence in both non-insulin-dependent and insulin-dependent diabetes mellitus. N. Engl. J. Med. 310, 746–750 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt, M. I., Lin, Q. X., Gwynne, J. T. & Jacobs, S. Fasting early morning rise in peripheral insulin: evidence of the dawn phenomenon in nondiabetes. Diabetes Care 7, 32–35 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Campbell, P. J., Bolli, G. B., Cryer, P. E. & Gerich, J. E. Pathogenesis of the dawn phenomenon in patients with insulin-dependent diabetes mellitus. Accelerated glucose production and impaired glucose utilization due to nocturnal surges in growth hormone secretion. N. Engl. J. Med. 312, 1473–1479 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Monnier, L., Colette, C., Dejager, S. & Owens, D. Magnitude of the dawn phenomenon and its impact on the overall glucose exposure in type 2 diabetes: is this of concern? Diabetes Care 36, 4057–4062 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Campbell, P. J., Bolli, G. B., Cryer, P. E. & Gerich, J. E. Sequence of events during development of the dawn phenomenon in insulin-dependent diabetes mellitus. Metabolism 34, 1100–1104 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Clark, L. A. et al. A quantitative analysis of the effects of activity and time of day on the diurnal variations of blood pressure. J. Chronic Dis. 40, 671–681 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Linsell, C. R., Lightman, S. L., Mullen, P. E., Brown, M. J. & Causon, R. C. Circadian rhythms of epinephrine and norepinephrine in man. J. Clin. Endocrinol. Metab. 60, 1210–1215 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Krauchi, K. & Wirz-Justice, A. Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am. J. Physiol. 267, R819–R829 (1994).

    CAS  PubMed  Google Scholar 

  36. Van Cauter, E. & Spiegel, K. in Neurobiology of Sleep and Circadian Rhythms Vol. 133 (eds Turek, F. W. & Zee, P. C) 397–426 (Marcel Dekker, 1999).

    Google Scholar 

  37. Van Cauter, E. & Copinschi, G. in Human Growth Hormone Secretion: Basic and Clinical Research Ch. 16 (eds Smith, R. G. & Thorner, M. O) 261–283 (Humana Press, 1999).

    Google Scholar 

  38. Van Cauter, E. et al. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J. Clin. Invest. 88, 934–942 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Scheer, F. A. et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc. Natl Acad. Sci. USA 107, 20541–20546 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scheer, F. A. et al. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS ONE 6, e24549 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shea, S. A., Hilton, M. F., Hu, K. & Scheer, F. A. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ. Res. 108, 980–984 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Scheer, F. A. & Shea, S. A. Human circadian system causes morning peak in pro-thrombotic plasminogen activator inhibitor-1 (PAI-1) independent of sleep/wake cycle. Blood 123, 590–593 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Edery, I. Circadian rhythms in a nutshell. Physiol. Genomics 3, 59–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Gekakis, N. et al. Role of the clock protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Hogenesch, J., Gu, Y., Jain, S. & Bradfield, C. The basic-helix–loop–helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl Acad. Sci. USA 95, 5474–5479 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zylka, M., Shearman, L., Weaver, D. & Reppert, S. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Miyamoto, Y. & Sancar, A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc. Natl Acad. Sci. USA 95, 6097–6102 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. McCarthy, J. J. et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 31, 86–95 (2007).

    Article  PubMed  CAS  Google Scholar 

  52. Martino, T. et al. Day/night rhythms in gene expression of the normal murine heart. J. Mol. Med. 82, 256–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Cardone, L. et al. Circadian clock control by SUMOylation of BMAL1. Science 309, 1390–1394 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Hardin, P. E. & Yu, W. Circadian transcription: passing the hat to clock. Cell 125, 424–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kloss, B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 94, 97–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Millar, A. J. Clock proteins: turned over after hours? Curr. Biol. 10, R529–R531 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Asher, G. & Schibler, U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 13, 125–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Durgan, D. J. et al. O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J. Biol. Chem. 286, 44606–44619 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. O'Neill, J. S. et al. Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554–558 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Meyer-Bernstein, E. L. et al. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140, 207–218 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Coomans, C. P. et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 62, 1102–1108 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Malloy, J. N., Paulose, J. K., Li, Y. & Cassone, V. M. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators. Am. J. Physiol. Gastrointest Liver Physiol. 303, G461–G473 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. LeSauter, J., Romero, P., Cascio, M. & Silver, R. Attachment site of grafted SCN influences precision of restored circadian rhythm. J. Biol. Rhythms. 12, 327–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Silver, R., LeSauter, J., Tresco, P. A. & Lehman, M. N. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382, 810–813 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Lehman, M. N. et al. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J. Neurosci. 7, 1626–1638 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou, Q. Y. & Cheng, M. Y. Prokineticin 2 and circadian clock output. FEBS J. 272, 5703–5709 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Leise, T. L., Wang, C. W., Gitis, P. J. & Welsh, D. K. Persistent cell-autonomous circadian oscillations in fibroblasts revealed by six-week single-cell imaging of PER2::LUC bioluminescence. PLoS ONE 7, e33334 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Klein, D. C. & Moore, R. Y. Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res. 174, 245–262 (1979).

    Article  CAS  PubMed  Google Scholar 

  72. Oster, H. et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4, 163–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Son, G. H. et al. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc. Natl Acad. Sci. USA 105, 20970–20975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Allaman-Pillet, N. et al. Circadian regulation of islet genes involved in insulin production and secretion. Mol. Cell. Endocrinol. 226, 59–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Marcheva, B. et al. Disruption of the clock components clock and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627–631 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Sadacca, L. A., Lamia KA, deLemos, A. S., Blum, B. & Weitz, C. J. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54, 120–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Knutsson, A., Akerstedt, T., Jonsson, B. & Orth-Gomer, K. Increased risk of ischaemic heart disease in shift workers. Lancet 12, 89–92 (1986).

    Article  Google Scholar 

  78. Koller, M. Health risks related to shift work: an example of time-contingent effects of long-term stress. Int. Arch. Occup. Environ. Health 53, 59–75 (1983).

    Article  CAS  PubMed  Google Scholar 

  79. Arble, D. M., Ramsey, K. M., Bass, J. & Turek, F. W. Circadian disruption and metabolic disease: findings from animal models. Best Pract. Res. Clin. Endocrinol. Metab. 24, 785–800 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Labyak, S., Lava, S., Turek, F. & Zee, P. Effects of shiftwork on sleep and menstrual function in nurses. Health Care Women Int. 23, 703–714 (2002).

    Article  PubMed  Google Scholar 

  81. Summa, K. C., Vitaterna, M. H. & Turek, F. W. Environmental perturbation of the circadian clock disrupts pregnancy in the mouse. PLoS ONE 7, e37668 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kennaway, D. J. The role of circadian rhythmicity in reproduction. Hum. Reprod. Update 11, 91–101 (2005).

    Article  PubMed  Google Scholar 

  83. Miller, B. H. et al. Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr. Biol. 14, 1367–1373 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Gamble, K. L., Resuehr, D. & Johnson, C. H. Shift work and circadian dysregulation of reproduction. Front. Endocrinol. (Lausanne) 4, 92 (2013).

    Article  Google Scholar 

  85. van den Buuse, M. Circadian rhythms of blood pressure and heart rate in conscious rats: effects of light cycle shift and timed feeding. Physiol. Behav. 68, 9–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Durgan, D. J. et al. The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J. Biol. Chem. 281, 24254–24269 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Davidson, A. J., Castanon-Cervantes, O., Leise, T. L., Molyneux, P. C. & Harrington, M. E. Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. Eur. J. Neurosci. 29, 171–180 (2009).

    Article  PubMed  Google Scholar 

  88. Sellix, M. T. et al. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J. Neurosci. 32, 16193–16202 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Tsai, L. L., Tsai, Y. C., Hwang, K., Huang, Y. W. & Tzeng, J. E. Repeated light-dark shifts speed up body weight gain in male F344 rats. Am. J. Physiol. Endocrinol. Metab. 289, E212–E217 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Filipski, E. et al. Circadian disruption accelerates liver carcinogenesis in mice. Mutat. Res. 680, 95–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Cambras, T. et al. Circadian desynchronization of core body temperature and sleep stages in the rat. Proc. Natl Acad. Sci. USA 104, 7634–7639 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Castanon-Cervantes, O. et al. Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 185, 5796–5805 (2010).

    Article  PubMed  CAS  Google Scholar 

  93. de la Iglesia, H. O., Cambras, T., Schwartz, W. J. & Diez-Noguera, A. Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr. Biol. 14, 796–800 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Escobar, C. et al. Circadian disruption leads to loss of homeostasis and disease. Sleep Disord. 2011, 964510 (2011).

    PubMed  Google Scholar 

  95. Bartol-Munier, I., Gourmelen, S., Pevet, P. & Challet, E. Combined effects of high-fat feeding and circadian desynchronization. Int. J. Obes. (Lond.) 30, 60–67 (2006).

    Article  CAS  Google Scholar 

  96. Salgado-Delgado, R. C. et al. Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats. PLoS ONE 8, e60052 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Bellastella, A. et al. Endocrine secretions under abnormal light-dark cycles and in the blind. Horm. Res. 49, 153–157 (1998).

    CAS  PubMed  Google Scholar 

  98. Gibson, E. M., Wang, C., Tjho, S., Khattar, N. & Kriegsfeld, L. J. Experimental 'jet lag' inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters. PLoS ONE 5, e15267 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kiessling, S., Eichele, G. & Oster, H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J. Clin. Invest. 120, 2600–2609 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Vitaterna, M. et al. Mutagenesis and mapping of a mouse gene; clock; essential for circadian behavior. Science 264, 719–725 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Turek, F. et al. Obesity and metabolic syndrome in clock mutant mice. Science 308, 1043–1045 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kondratov, R. V., Kondratova, A. A., Gorbacheva,V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 20, 1868–1873 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kennaway, D. J., Varcoe, T. J., Voultsios, A. & Boden, M. J. Global loss of BMAL1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PLoS ONE 8, e65255 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rudic, R. D. et al. BMAL1 and clock, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Carvas, J. M. et al. Period2 gene mutant mice show compromised insulin-mediated endothelial nitric oxide release and altered glucose homeostasis. Front. Physiol. 3, 337 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Morris, C. J., Aeschbach, D. & Scheer, F. A. Circadian system, sleep and endocrinology. Mol. Cell. Endocrinol. 349, 91–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Scheer, F. A., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nguyen, J. & Wright, K. P. Jr Influence of weeks of circadian misalignment on leptin levels. Nat. Sci. Sleep 2, 9–18 (2010).

    PubMed  Google Scholar 

  109. Archer, S. N. et al. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc. Natl Acad. Sci. USA 111, E682–E691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Leproult, R., Holmbäck, U. & Van Cauter, E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes http://dx.doi.org/10.2337/db13–1546.

  111. Weibel, L., Spiegel, K., Gronfier, C., Follenius, M. & Brandenberger, G. Twenty-four-hour melatonin and core body temperature rhythms: their adaptation in night workers. Am. J. Physiol. 272, R948–R954 (1997).

    CAS  PubMed  Google Scholar 

  112. Boivin, D. B. & James, F. O. Circadian adaptation to night-shift work by judicious light and darkness exposure. J. Biol. Rhythms. 17, 556–567 (2002).

    Article  PubMed  Google Scholar 

  113. Hennig, J., Kieferdorf, P., Moritz, C., Huwe, S. & Netter, P. Changes in cortisol secretion during shiftwork: implications for tolerance to shiftwork? Ergonomics 41, 610–621 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Pietroiusti, A. et al. Incidence of metabolic syndrome among night-shift healthcare workers. Occup. Environ. Med. 67, 54–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Lund, J., Arendt, J., Hampton, S. M., English, J. & Morgan, L. M. Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J. Endocrinol. 171, 557–564 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Schiavo-Cardozo, D., Lima, M. M., Pareja, J. C. & Geloneze, B. Appetite-regulating hormones from the upper gut: disrupted control of xenin and ghrelin in night workers. Clin. Endocrinol. (Oxf.) 79, 807–811 (2013).

    Article  CAS  Google Scholar 

  117. Boivin, D. B., Tremblay, G. M. & James, F. O. Working on atypical schedules. Sleep Med. 8, 578–589 (2007).

    Article  PubMed  Google Scholar 

  118. Foster, R. G. & Wulff, K. The rhythm of rest and excess. Nat. Rev. Neurosci. 6, 407–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Knutsson, A., Akerstedt, T., Jonsson, B. G. & Orth-Gomer, K. Increased risk of ischaemic heart disease in shift workers. Lancet 2, 89–92 (1986).

    Article  CAS  PubMed  Google Scholar 

  120. Kroenke, C. H. et al. Work characteristics and incidence of type 2 diabetes in women. Am. J. Epidemiol. 165, 175–183 (2007).

    Article  PubMed  Google Scholar 

  121. Ando, H. et al. Clock gene expression in peripheral leucocytes of patients with type 2 diabetes. Diabetologia 52, 329–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Boden, G., Chen, X. & Urbain, J. L. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes 45, 1044–1050 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Boden, G., Chen, X. & Polansky, M. Disruption of circadian insulin secretion is associated with reduced glucose uptake in first-degree relatives of patients with type 2 diabetes. Diabetes 48, 2182–2188 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Sans-Fuentes, M. A., Diez-Noguera, A. & Cambras, T. Light responses of the circadian system in leptin deficient mice. Physiol. Behav. 99, 487–494 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Danguir, J. Sleep patterns in the genetically obese Zucker rat: effect of acarbose treatment. Am. J. Physiol. 256, R281–R283 (1989).

    CAS  PubMed  Google Scholar 

  126. Megirian, D., Dmochowski, J. & Farkas, G. A. Mechanism controlling sleep organization of the obese Zucker rats. J. Appl. Physiol. 84, 253–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Kudo, T. et al. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver. Diabetologia 47, 1425–1436 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Laposky, A. D. et al. Altered sleep regulation in leptin-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R894–R903 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Kohsaka, A. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6, 414–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Pendergast, J. S. et al. High-fat diet acutely affects circadian organisation and eating behavior. Eur. J. Neurosci. 37, 1350–1356 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Shi, S. et al. Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr. Biol. 20, 316–321 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. McDearmon, E. L. et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314, 1304–1308 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Hughes, M. E. et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5, e1000442 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Hughes, M. E. et al. Brain-specific rescue of clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet. 8, e1002835 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Minami, Y., Horikawa, K., Akiyama, M. & Shibata, S. Restricted feeding induces daily expression of clock genes and Pai-1 mRNA in the heart of Clock mutant mice. FEBS Lett. 526, 115–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Bray, M. S. et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int. J. Obes. (Lond.) 34, 1589–1598 (2010).

    Article  CAS  Google Scholar 

  138. Bray, M. S. et al. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int. J. Obes. (Lond.) 37, 843–852 (2013).

    Article  CAS  Google Scholar 

  139. Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H. & Turek, F. W. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 17, 2100–2102 (2009).

    Article  Google Scholar 

  140. Fonken, L. K. et al. Light at night increases body mass by shifting the time of food intake. Proc. Natl Acad. Sci. USA 107, 18664–18669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Stunkard, A. J. & Allison, K. C. Two forms of disordered eating in obesity: binge eating and night eating. Int. J. Obes Relat. Metab. Disord. 27, 1–12 (2003).

    Article  PubMed  Google Scholar 

  143. Qin, L. Q. et al. The effects of nocturnal life on endocrine circadian patterns in healthy adults. Life Sci. 73, 2467–2475 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Barclay, J. L. et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS ONE 7, e37150 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Schroeder, A. M. & Colwell, C. S. How to fix a broken clock. Trends Pharmacol. Sci. 34, 605–619 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Hirota, T. et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 8, e1000559 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Solt, L. A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hirota, T. et al. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3β. Proc. Natl Acad. Sci. USA 105, 20746–20751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vougogiannopoulou, K. et al. Soluble 3′,6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase-3 alter circadian period. J. Med. Chem. 51, 6421–6431 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Klingman, K. M., Marsh, E. E, Klerman, E. B., Anderson, E. J. & Hall, J. E. Absence of circadian rhythms of gonadotropin secretion in women. J. Clin. Endocrinol. Metab. 96, 1456–1461 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. White, W. B. Importance of blood pressure control over a 24-hour period. J. Manag. Care Pharm. 13, 34–39 (2007).

    PubMed  Google Scholar 

  153. Lee, P. et al. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J. Clin. Endocrinol. Metab. 98, E98–E102 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Yu, H. et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin. Chem. 57, 691–700 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Koutkia, P. et al. Reciprocal changes in endogenous ghrelin and growth hormone during fasting in healthy women. Am. J. Physiol. Endocrinol. Metab. 289, E814–E822 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Natalucci, G., Riedl, S., Gleiss, A., Zidek, T. & Frisch, H. Spontaneous 24-h ghrelin secretion pattern in fasting subjects: Maintenance of a meal-related pattern. Eur. J. Endocrinol. 152, 845–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Forsling, M. L. Diurnal rhythms in neurohypophysial function. Exp. Physiol. 85, 179S–186S (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Heart, Lung, and Blood Institute (HL-074259, HL-106199 and HL-107709 to M.E.Y.), the National Institute of Diabetes and Digestive and Kidney Diseases (DK-58259 to S.J.F.), the US Department of Veterans Affairs (Merit Review Award to S.J.F.), and the Neurological Disease and Stroke Institute (NS082413 to K.L.G.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided a substantial contribution to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Martin E. Young.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamble, K., Berry, R., Frank, S. et al. Circadian clock control of endocrine factors. Nat Rev Endocrinol 10, 466–475 (2014). https://doi.org/10.1038/nrendo.2014.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing