Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potential therapeutic applications of autophagy

Key Points

  • Macroautophagy, which is generally referred to as autophagy, involves the largely non-specific autophagic sequestration of cytoplasm into a double- or multiple-membrane-delimited compartment, termed an autophagosome, which is of non-lysosomal or vacuolar origin.

  • Autophagy normally plays a role in development, innate immunity, tumour suppression and the elimination of microbial pathogens. Defects in autophagy can result in some types of cancer, neurodegneration and myopathies.

  • Autophagy has a cytoprotective role, but can also participate in type II programmed cell death. Too much autophagy can be just as deleterious as an insufficient level of autophagy. It is important to gain a full understanding of the regulatory pathways to maximize the possibility of modulating autophagy for therapeutic purposes.

  • Stimulation of autophagy, for example through the mammalian target of rapamycin (mTOR)-inhibitor rapamycin, is being explored for cancer treatment.

  • The autophagy-related (Atg) proteins that are the subcellular machinery for this process are conserved from yeast to human. There are currently no drugs that directly inhibit or activate the Atg proteins.

  • Conditions that are associated with the accumulation of misfolded or aberrant proteins, such as Huntington's disease, forms of dementia and subtypes of Parkinson's disease, might be particularly amenable to treatments that stimulate autophagy.

Abstract

Autophagy is a dynamic process of subcellular degradation, which has recently sparked great interest as it is now recognized to be involved in various developmental processes and various diseases including cancer and neurodegeneration. Autophagy can function as a cytoprotective mechanism; however, it also has the capacity to cause cell death. A better understanding of autophagy is needed to allow its manipulation for therapeutic purposes, and new insights into the molecular mechanisms of autophagy are now leading to the discovery of exciting new potential drug targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of macroautophagy.
Figure 2: Considerations for pharmacological modulation of autophagy.
Figure 3: Small molecules that affect autophagy.

Similar content being viewed by others

References

  1. Tallóczy, Z., Virgin, H. W. IV & Levine, B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2, 24–29 (2006).

    Article  PubMed  Google Scholar 

  2. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Rubinsztein, D. C. et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1, 11–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Botti, J., Djavaheri-Mergny, M., Pilatte, Y. & Codogno, P. Autophagy signaling and the cogwheels of cancer. Autophagy 2, 67–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Jin, S. Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2, 80–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Kondo, Y. & Kondo, S. Autophagy and cancer therapy. Autophagy 2, 85–90 (2006).

    Article  PubMed  Google Scholar 

  7. Levine, B. Unraveling the role of autophagy in cancer. Autophagy 2, 65–66 (2006).

    Article  PubMed  Google Scholar 

  8. Belanger, M., Rodrigues, P. H., Dunn, W. A. Jr. & Progulske-Fox, A. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2, 165–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Birmingham, C. L. & Brumell, J. H. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2, 156–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Colombo, M. I., Gutierrez, M. G. & Romano, P. S. The two faces of autophagy: Coxiella and Mycobacterium. Autophagy 2, 162–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Dubuisson, J. F. & Swanson, M. S. Mouse infection by Legionella, a model to analyze autophagy. Autophagy 2, 179–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ogawa, M. & Sasakawa, C. Shigella and autophagy. Autophagy 2, 171–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Vergne, I. et al. Autophagy in immune defense against Mycobacterium tuberculosis. Autophagy 2, 175–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Webster, P. Cytoplasmic bacteria and the autophagic pathway. Autophagy 2, 159–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshimori, T. Autophagy vs. group A Streptococcus. Autophagy 2, 154–155 (2006).

    Article  PubMed  Google Scholar 

  16. Klionsky, D. J. Autophagy (Landes Bioscience, Georgetown, 2004).

    Google Scholar 

  17. Wang, C.-W. & Klionsky, D. J. The molecular mechanism of autophagy. Mol. Med. 9, 65–76 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Massey, A. C., Zhang, C. & Cuervo, A. M. Chaperone-mediated autophagy in aging and disease. Curr. Top. Dev. Biol. 73, 205–235 (2006).

    Article  CAS  Google Scholar 

  19. Yorimitsu, T. & Klionsky, D. J. Autophagy: molecular machinery for self-eating. Cell Death Differ. 12, 1542–1552 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Reggiori, F. & Klionsky, D. J. Autophagy in the eukaryotic cell. Eukaryot. Cell 1, 11–21 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohsumi, Y. & Mizushima, N. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol. 15, 231–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Nair, U. & Klionsky, D. J. Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J. Biol. Chem. 280, 41785–41788 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Kihara, A., Kabeya, Y., Ohsumi, Y. & Yoshimori, T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2, 330–335 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999). This paper demonstrates that BECN1 acts like the yeast ATG6 gene and promotes autophagy. The study also provides the first evidence that implicates BECN1 as a tumour-suppressor gene.

    Article  CAS  PubMed  Google Scholar 

  28. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003). This shows that the heterozygous inactivation of beclin1 results in tumour-predisposition in mice, which confirms that the loss of Beclin 1 activity (seen in certain human cancers) might be relevant to carcinogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Young, A. R. J. et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119, 3888–3900 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Noda, T. et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol. 148, 465–480 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320–2326 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507–1513 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klionsky, D. J., Meijer, A. J., Codogno, P., Neufeld, T. P. & Scott, R. C. Autophagy and p70S6 kinase. Autophagy 1, 59–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Bjornsti, M. A. & Houghton, P. J. The TOR pathway: a target for cancer therapy. Nature Rev. Cancer 4, 335–348 (2004).

    Article  CAS  Google Scholar 

  36. Galanis, E. et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol. 23, 5294–5304 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, V. W. & Chapman, J. R. Sirolimus: its role in nephrology. Nephrology (Carlton) 10, 606–614 (2005).

    Article  CAS  Google Scholar 

  38. Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16, 1865–1870 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Sabatini, D. M. mTOR and cancer: insights into a complex relationship. Nature Rev. Cancer 6, 729–34 (2006).

    Article  CAS  Google Scholar 

  42. Sarkar, S. et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170, 1101–1111 (2005). This paper describes a novel mTOR-independent pathway for inducing autophagy. This pathway, which is negatively regulated by IP 3 levels, can be activated by commonly used drugs such as lithium, carbemazepine and sodium valproate. Thus, these drugs might have clinical utility for autophagy upregulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berridge, M. J. Unlocking the secrets of cell signaling. Annu. Rev. Physiol. 67, 1–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Menzies, F. M., Ravikumar, B. & Rubinsztein, D. C. Protective roles for induction of autophagy in multiple proteinopathies. Autophagy 2, 224–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Sanchez, I., Mahlke, C. & Yuan, J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002). This was the first study that suggested that aggregate-prone intracytosolic proteins, such as mutant huntingtin fragments, are dependent on autophagy for their clearance. It also provides the 'proof-of-principle' for protective effects of autophagy upregulation in cell models of Huntington's disease.

    Article  CAS  PubMed  Google Scholar 

  48. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Iwata, A. et al. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl Acad. Sci. USA 102, 13135–13140 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qin, Z. H. et al. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum. Mol. Genet. 12, 3231–3244 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Shibata, M. et al. Regulation of intracellular accumulation of mutant huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004). This study shows that rapamycin attenuates the toxicity of mutant huntingtin in vivo , using transgenic D. melangaster and mouse models. The study also reports upregulation of autophagy in polyglutamine diseases.

    Article  CAS  PubMed  Google Scholar 

  53. Berger, Z. et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Kabuta, T., Suzuki, Y. & Wada, K. Degradation of amyotrophic lateral sclerosis-linked mutant Cu, Zn-superoxide dismutase proteins by macroautophagy and the proteasome. J. Biol. Chem. 281, 30524–30533 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Fortun, J., Dunn, W. A., Jr., Joy, S., Li, J. & Notterpek, L. Emerging role for autophagy in the removal of aggresomes in Schwann cells. J. Neurosci. 23, 10672–10680 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006). This study shows that the targeted disruption of ATG5 (which blocks autophagy) in neuronal cells results in the formation of inclusion bodies and neurodegeneration. This suggests that normal cellular proteins are autophagy substrates and that a blockade of basal autophagy is neurotoxic.

    Article  CAS  PubMed  Google Scholar 

  57. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006). This study shows that the targeted disruption of ATG7 (which blocks autophagy) in neuronal cells results in formation of inclusion bodies and neurodegeneration. This study was published together with reference 56, and the two papers provide compelling and complementary evidence that basal autophagy is crucial for neuronal survival.

    Article  CAS  PubMed  Google Scholar 

  58. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Ravikumar, B., Berger, Z., Vacher, C., O'Kane, C. J. & Rubinsztein, D. C. Rapamycin pre-treatment protects against apoptosis. Hum. Mol. Genet. 15, 1209–1216 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Kessel, D. & Reiners, J. J. Jr. Initiation of apoptosis and autophagy by the Bcl-2 antagonist HA14-1. Cancer Lett. 18 Oct 2006 (doi:10.1016/j.canlet.2006.09.009).

  61. Saeki, K. et al. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ. 7, 1263–1269 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Verhoef, L. G., Lindsten, K., Masucci, M. G. & Dantuma, N. P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet. 11, 2689–2700 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004). This paper provides strong evidence that mycobacteria are degraded by autophagy in infected macrophages.

    Article  CAS  PubMed  Google Scholar 

  64. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004). This paper shows that autophagy can help to eliminate group A Streptococci in non-phagocytic cells.

    Article  CAS  PubMed  Google Scholar 

  65. Kirkegaard, K., Taylor, M. P. & Jackson, W. T. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nature Rev. Microbiol. 2, 301–314 (2004).

    Article  CAS  Google Scholar 

  66. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Jin, S. p53, autophagy and tumor suppression. Autophagy 1, 171–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Hippert, M. M., O' Toole P, S. & Thorburn, A. Autophagy in cancer: good, bad, or both? Cancer Res. 66, 9349–9351 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Shintani, T. & Klionsky, D. J. Autophagy in health and disease: a double-edged sword. Science 306, 990–995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wienecke, R. et al. Antitumoral activity of rapamycin in renal angiomyolipoma associated with tuberous sclerosis complex. Am. J. Kidney Dis. 48, e27–e29 (2006).

    Article  PubMed  Google Scholar 

  71. Furuya, N., Liang, X. H. & Levine, B. in Autophagy (ed. Klionsky, D. J.) 241–255 (Landes Bioscience, Georgetown, 2004).

    Google Scholar 

  72. Amaravadi, R. K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. (2007). This paper suggests that autophagy inhibition enhances various pro-apoptotic chemotherapeutic strategies that might be of value in treating certain cancers.

  73. Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA 96, 4240–4245 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, Z. & Roberts, T. M. Human tumor mutants in the p110α subunit of PI3K. Cell Cycle 5, 675–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Vanhaesebroeck, B., Ali, K., Bilancio, A., Geering, B. & Foukas, L. C. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem. Sci. 30, 194–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Ward, S. G. & Finan, P. Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr. Opin. Pharmacol. 3, 426–434 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005). Bax−/−Bak −/− cells activate autophagy, undergo progressive atrophy, and eventually die after growth factor withdrawal. This study shows that autophagy is a protective response against cell death in this context.

    Article  CAS  PubMed  Google Scholar 

  79. Knight, Z. A. et al. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125, 733–747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fan, Q. W. et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9, 341–349 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 33–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Fass, E., Shvets, E., Degani, I., Hirschberg, K. & Elazar, Z. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem. 281, 36303–36316 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 25, 1025–1040 (2005). This study reports that mammalian cells are much more likely to die after growth factor withdrawal if autophagy is inhibited.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Leung-Toung, R. et al. Thiol proteases: inhibitors and potential therapeutic targets. Curr. Med. Chem. 13, 547–581 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Kumanomidou, T. et al. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J. Mol. Biol. 355, 612–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Knight, Z. A. & Shokat, K. M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Berg, T. Modulation of protein-protein interactions with small organic molecules. Angew. Chem. Int. Ed. Engl. 42, 2462–2481 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Gestwicki, J. E., Crabtree, G. R. & Graef, I. A. Harnessing chaperones to generate small-molecule inhibitors of amyloid β aggregation. Science 306, 865–869 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Toogood, P. L. Inhibition of protein–protein association by small molecules: approaches and progress. J. Med. Chem. 45, 1543–1558 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.C.R. is grateful for funding from the Medical Research Council (Programme Grant), Wellcome Trust (Senior Fellowship in Clinical Science, EU Framework VI (EUROSCA and Wyeth (who make rapamycins). D.J.K. is supported by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D.C.R. is an inventor on patents relating to the use of autophagy upregulation for treating neurodegenerative diseases. D.C.R. is grateful for funding from the Medical Research Council (Programme Grant), Wellcome Trust (Senior Fellowship in Clinical Science and EU Framework VI (EUROSCA) and Wyeth (who make rapamycins). None of these sponsors have reviewed this manuscript. D.J.K. is the Editor-in-Chief of the journal Autophagy and is supported by a Public Health Service Grant from the National Institutes of Health.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Huntington's disease

Machado–Joseph disease

Parkinson's disease

rheumatoid arthritis

FURTHER INFORMATION

Jason E. Gestwicki's homepage

Daniel J. Klionsky's homepage

David C. Rubinsztein's homepage

Novartis Institutes for BioMedical Research

Glossary

Phosphotidylinositol-3-kinases

Class I phosphotidylinositol (PtdIns)-3-kinases are composed of catalytic p110 subunits and p85 adaptors. The main product of the class I enzymes is PtdIns(3,4,5)P3. This PtdIns participates in inhibition of autophagy. The Class III PtdIns-3-kinase is Vps34, which is associated with a presumed regulatory protein kinase Vps15. The class III enzyme generates only PtdIns(3)-phosphate, which is stimulatory for autophagy.

Akt1

Akt1 (or protein kinase B) is a serine/threonine protein kinase that is activated by the phosphotidylinositol-3-kinase pathway that activates survival responses.

mTOR

(Mammalian target of rapamycin). A family of kinases that is conserved in all eukaryotes that are sensitive to rapamycin and function in nutrient-sensing signal transduction, regulate translation and promote cell-cycle progression.

Haploinsufficient

A gene that requires biallelic expression. Suppression of one allele would reduce the gene dosage below the critical level.

3-methyladenine

3-methyladenine is an inhibitor of class III phosphotidylinositol-3-kinases and blocks autophagy. This compound acts as a competitive inhibitor of ATP.

Bafilomycin A1

Bafilomycin A1 binds integral membrane subunits in the vacuolar-type ATPase located in the lysosome membrane. The resulting inhibition of proton translocation, elevates lysosomal pH and blocks autophagy.

Bcl-2

(B-cell CLL/lymphoma 2). The founding member of a family of apoptosis-regulating proteins. Many Bcl-2-family members regulate mitochondria-dependent steps in cell-death pathways, with some suppressing and others promoting the release of apoptogenic proteins from these organelles.

p53

A tumour-suppressor protein that is involved in the regulation of cell-cycle events, including apoptosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinsztein, D., Gestwicki, J., Murphy, L. et al. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6, 304–312 (2007). https://doi.org/10.1038/nrd2272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing