Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A pathophysiological paradigm for the therapy of psychiatric disease

Abstract

Despite enormous progress in fundamental knowledge in neuroscience, no revolutionary therapies in psychiatry (and neurology) have emerged in the past ten years. Most drugs alleviate symptoms, rather than restoring the 'set point' of brain function from a pathological position to a more normal one. We propose a hypothesis-driven, systems-level approach to drug discovery and development that is based on pathophysiology and which uses new animal models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of severe stress on hippocampal/prefrontal function.
Figure 2: The main memory systems of the brain.

Similar content being viewed by others

References

  1. Wong, M. L. & Licinio, J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nature Rev. Drug Discov. 3, 136–151 (2004).

    Article  CAS  Google Scholar 

  2. Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nature Rev. Drug Discov. 3, 353–359 (2004).

    Article  CAS  Google Scholar 

  3. Mayberg, H. S. Limbic-cortical dysregulation: a proposed model of depression. J. Neuropsychiatry Clin. Neurosci. 9, 471–481 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Goldapple, K. et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry 61, 34–41 (2004).

    Article  PubMed  Google Scholar 

  5. Keightley, M. L. et al. Personality influences limbic-cortical interactions during sad mood induction. Neuroimage 20, 2031–2039 (2003).

    Article  PubMed  Google Scholar 

  6. Mayberg, H. S., Lewis, P. J., Regenold, W. & Wagner, H. N. Jr. Paralimbic hypoperfusion in unipolar depression. J. Nucl. Med. 35, 929–934 (1994).

    CAS  PubMed  Google Scholar 

  7. Seminowicz, D. A. et al. Limbic–frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 22, 409–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Manji, H. K. et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol. Psychiatry 53, 707–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Shorter, E. & Tyrer, P. Separation of anxiety and depressive disorders: blind alley in psychopharmacology and classification of disease. BMJ 327, 158–160 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Ekselius, L. & Von Knorring, L. Changes in personality traits during treatment with sertraline or citalopram. Br. J. Psychiatry 174, 444–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Edwards, J. G. Suicide and antidepressants. BMJ 310, 205–206 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Healy, D., Langmaak, C. & Savage, M. Suicide in the course of the treatment of depression. J. Psychopharmacol. 13, 94–99 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Michael, A. & O'Keane, V. Sexual dysfunction in depression. Hum. Psychopharmacol. 15, 337–345 (2000).

    Article  PubMed  Google Scholar 

  17. Henderson, D. C. Atypical antipsychotic-induced diabetes mellitus: how strong is the evidence? CNS Drugs 16, 77–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Meltzer, H. Y. Introduction: cardiovascular and metabolic risks associated with schizophrenia and antipsychotic drug treatment. J. Clin. Psychiatry 63, 3–4 (2002).

    Google Scholar 

  19. Davidson, M. Risk of cardiovascular disease and sudden death in schizophrenia. J. Clin. Psychiatry 63 (Suppl. 9), 5–11 (2002).

    PubMed  Google Scholar 

  20. Vieweg, W. V. Mechanisms and risks of electrocardiographic QT interval prolongation when using antipsychotic drugs. J. Clin. Psychiatry 63 (Suppl. 9), 18–24 (2002).

    CAS  PubMed  Google Scholar 

  21. Zhang, X. et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron (in the press).

  22. Pezawas, L. et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 24, 10099–10102 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Francis, D. D., Szegda, K., Campbell, G., Martin, W. D. & Insel, T. R. Epigenetic sources of behavioral differences in mice. Nature Neurosci. 6, 445–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Rutter, M. L. Psychosocial adversity and child psychopathology. Br. J. Psychiatry 174, 480–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Kendler, K. S. et al. Childhood sexual abuse and adult psychiatric and substance use disorders in women: an epidemiological and cotwin control analysis. Arch. Gen. Psychiatry 57, 953–959 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Andriamampandry, C. et al. Mss4 gene is up-regulated in rat brain after chronic treatment with antidepressant and down-regulated when rats are anhedonic. Mol. Pharmacol. 62, 1332–1338 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Gunther, E. C., Stone, D. J., Gerwien, R. W., Bento, P. & Heyes, M. P. Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc. Natl Acad. Sci. USA 100, 9608–9613 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moller, H. J. Anxiety associated with comorbid depression. J. Clin. Psychiatry 63 (Suppl. 14), 22–26 (2002).

    CAS  PubMed  Google Scholar 

  29. Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. McKernan, M. G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Convit, A. et al. Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol. Aging 18, 131–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Golomb, J. et al. Hippocampal formation size in normal human aging: a correlate of delayed secondary memory performance. Learn. Mem. 1, 45–54 (1994).

    CAS  PubMed  Google Scholar 

  33. Bremner, J. D. et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry 152, 973–981 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gurvits, T. V. et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry 40, 1091–1099 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G. & Vannier, M. W. Hippocampal atrophy in recurrent major depression. Proc. Natl Acad. Sci. USA 93, 3908–3913 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheline, Y. I., Sanghavi, M., Mintun, M. A. & Gado, M. H. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J. Neurosci. 19, 5034–5043 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duman, R. S. & Charney, D. S. Cell atrophy and loss in major depression. Biol. Psychiatry 45, 1083–1084 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nature Rev. Neurosci. 3, 453–462 (2002).

    Article  CAS  Google Scholar 

  39. Rocher, C., Spedding, M., Munoz, C. & Jay, T. M. Acute Stress-induced Changes in Hippocampal/Prefrontal Circuits in Rats: Effects of Antidepressants. Cereb. Cortex 14, 224–229 (2004).

    Article  PubMed  Google Scholar 

  40. Meaney, M. J., Aitken, D. H., van Berkel, C., Bhatnagar, S. & Sapolsky, R. M. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239, 766–768 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Kofman, O. The role of prenatal stress in the etiology of developmental behavioural disorders. Neurosci. Biobehav. Rev. 26, 457–470 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Vythilingam, M. et al. Childhood trauma associated with smaller hippocampal volume in women with major depression. Am. J. Psychiatry 159, 2072–2080 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nakano, T. et al. Relationship between distressing cancer-related recollections and hippocampal volume in cancer survivors. Am. J. Psychiatry 159, 2087–2093 (2002).

    Article  PubMed  Google Scholar 

  44. Pham, K., McEwen, B. S., LeDoux, J. E. & Nader, K. Fear learning transiently impairs hippocampal cell proliferation. Neuroscience 130, 17–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Nagerl, U. V., Eberhorn, N., Cambridge, S. B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759–767 (2004).

    Article  PubMed  Google Scholar 

  48. Zhou, Q., Homma, K. J. & Poo, M. M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Rioult-Pedotti, M. S., Friedman, D. & Donoghue, J. P. Learning-induced LTP in neocortex. Science 290, 533–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Knott, G. W., Quairiaux, C., Genoud, C. & Welker, E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Marrone, D. F. & Petit, T. L. The role of synaptic morphology in neural plasticity: structural interactions underlying synaptic power. Brain Res. Brain Res. Rev. 38, 291–308 (2002).

    Article  PubMed  Google Scholar 

  52. Kempermann, G., Gast, D. & Gage, F. H. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann. Neurol. 52, 135–143 (2002).

    Article  PubMed  Google Scholar 

  53. Pluchino, S. et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–694 (2003).

    CAS  PubMed  Google Scholar 

  54. Mezey, E. et al. Transplanted bone marrow generates new neurons in human brains. Proc. Natl Acad. Sci. USA 100, 1364–1369 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spedding, M., Neau, I. & Harsing, L. Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Curr. Opin. Pharmacol. 3, 33–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Sodhi, M. S. & Sanders-Bush, E. Serotonin and brain development. Int. Rev. Neurobiol. 59, 111–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. West, A. R., Floresco, S. B., Charara, A., Rosenkranz, J. A. & Grace, A. A. Electrophysiological interactions between striatal glutamatergic and dopaminergic systems. Ann. NY Acad. Sci. 1003, 53–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Gurden, H., Takita, M. & Jay, T. M. Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal–prefrontal cortex synapses in vivo. J. Neurosci. 20, RC106 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schultz, W., Tremblay, L. & Hollerman, J. R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Duman, R. S., Heninger, G. R. & Nestler, E. J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Skolnick, P. Antidepressants for the new millennium. Eur. J. Pharmacol. 375, 31–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Tongiorgi, E., Righi, M. & Cattaneo, A. Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J. Neurosci. 17, 9492–9505 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kafitz, K. W., Rose, C. R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401, 918–921 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Kovalchuk, Y., Hanse, E., Kafitz, K. W. & Konnerth, A. Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science 295, 1729–1734 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki, F., Junier, M. P., Guilhem, D., Sorensen, J. C. & Onteniente, B. Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor. Neuroscience 64, 665–674 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Cohen-Cory, S. BDNF modulates, but does not mediate, activity-dependent branching and remodeling of optic axon arbors in vivo. J. Neurosci. 19, 9996–10003 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Young, D., Lawlor, P. A., Leone, P., Dragunow, M. & During, M. J. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nature Med. 5, 448–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Berchtold, N. C., Kesslak, J. P., Pike, C. J., Adlard, P. A. & Cotman, C. W. Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur J. Neurosci. 14, 1992–2002 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Russo-Neustadt, A., Beard, R. C. & Cotman, C. W. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Lauterborn, J. C., Poulsen, F. R., Stinis, C. T., Isackson, P. J. & Gall, C. M. Transcript-specific effects of adrenalectomy on seizure-induced BDNF expression in rat hippocampus. Brain Res. Mol. Brain Res. 55, 81–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Lauterborn, J. C., Lynch, G., Vanderklish, P., Arai, A. & Gall, C. M. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J. Neurosci. 20, 8–21 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dicou, E., Rangon, C. M., Guimiot, F., Spedding, M. & Gressens, P. Positive allosteric modulators of AMPA receptors are neuroprotective against lesions induced by an NMDA agonist in neonatal mouse brain. Brain Res. 970, 221–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Spedding, M., Sebban, C. & Perret, L. New directions for drug discovery in psychiatric disease. Dialogues Clin. Neurosci. 4, 336–341 (2002).

    Google Scholar 

  74. Krystal, J. H. et al. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 169, 215–233 (2003).

    Article  CAS  Google Scholar 

  75. Bremner, J. D. et al. Reduced volume of orbitofrontal cortex in major depression. Biol. Psychiatry 51, 273–279 (2002).

    Article  PubMed  Google Scholar 

  76. Campbell, S., Marriott, M., Nahmias, C. & MacQueen, G. M. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am. J. Psychiatry 161, 598–607 (2004).

    Article  PubMed  Google Scholar 

  77. Shakesby, A. C., Anwyl, R. & Rowan, M. J. Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J. Neurosci. 22, 3638–3644 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Czeh, B. et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl Acad. Sci. USA 98, 12796–12801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. File, S. E., Zangrossi, H., Jr., Viana, M. & Graeff, F. G. Trial 2 in the elevated plus-maze: a different form of fear? Psychopharmacology (Berl) 111, 491–494 (1993).

    Article  CAS  Google Scholar 

  80. Haller, J. & Halasz, J. Effects of two acute stressors on the anxiolytic efficacy of chlordiazepoxide. Psychopharmacology (Berl) 151, 1–6 (2000).

    Article  CAS  Google Scholar 

  81. Kent, J. M., Mathew, S. J. & Gorman, J. M. Molecular targets in the treatment of anxiety. Biol. Psychiatry 52, 1008–1030 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Weinberger, D. R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 44, 660–669 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Kalus, P., Senitz, D., Lauer, M. & Beckmann, H. Inhibitory cartridge synapses in the anterior cingulate cortex of schizophrenics. J. Neural. Transm. 106, 763–771 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Beckmann, H. Developmental malformations in cerebral structures of schizophrenic patients. Eur. Arch. Psychiatry Clin. Neurosci. 249 (Suppl. 4), 44–47 (1999).

    Article  PubMed  Google Scholar 

  85. Gur, R. C., Gunning-Dixon, F., Bilker, W. B. & Gur, R. E. Sex differences in temporo–limbic and frontal brain volumes of healthy adults. Cereb. Cortex 12, 998–1003 (2002).

    Article  PubMed  Google Scholar 

  86. Andreasen, N. C. et al. Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch. Gen. Psychiatry 49, 943–958 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Harrison, P. J. The neuropathological effects of antipsychotic drugs. Schizophr. Res. 40, 87–99 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Gogtay, N., Giedd, J. & Rapoport, J. L. Brain development in healthy, hyperactive, and psychotic children. Arch. Neurol. 59, 1244–1248 (2002).

    Article  PubMed  Google Scholar 

  89. Tamminga, C. A. & Medoff, D. R. Studies in schizophrenia: pathophysiology and treatment. Dialogues Clin. Neurosci. 4, 432–437 (2002).

    PubMed  PubMed Central  Google Scholar 

  90. Yamasaki, H., LaBar, K. S. & McCarthy, G. Dissociable prefrontal brain systems for attention and emotion. Proc. Natl Acad. Sci. USA 99, 11447–11451 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sebban, C., Tesolin-Decros, B., Ciprian-Ollivier, J., Perret, L. & Spedding, M. Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA, α1- and 5-HT2A-receptors. Br. J. Pharmacol. 135, 65–78 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burghardt, N. S., Sullivan, G. M., McEwen, B. S., Gorman, J. M. & LeDoux, J. E. The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol. Psychiatry 55, 1171–1178 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. McEwen, B. S., Magarinos, A. M. & Reagan, L. P. Structural plasticity and tianeptine: cellular and molecular targets. Eur. Psychiatry 17 (Suppl. 3), 318–330 (2002).

    Article  PubMed  Google Scholar 

  94. Radley, J. J. et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Spedding.

Ethics declarations

Competing interests

L.P. and M.S. are employees of the Groupe de Recherches Servier.J.C.S. has a consultancy relationship with Servier and has performed experimental studies for Servier (and many other companies). T.J. has a contract with Servier relating to animal models of depression.

Related links

Related links

DATABASES

Entrez Gene

5-HT1A receptor

MSS4

Tryptophan hydroxylase 2

OMIM

Friedrich's ataxia

Huntington's disease

Glossary

AMPAKINES

Positive allosteric modulators of AMPA receptors.

BRAIN-DERIVED NEUROPTROPHIC FACTOR

(BDNF). One of the main activity-dependent neurotrophic factors in the brain.

CELLULAR RESILIENCE

The property of being able to return to the original form, especially in the presence of stressors.

COMORBIDITY

The extent to which two diseases occur together in a given population.

DENDRITIC SPINES

The 'spine-like' extensions which project from dendrites to form specialized synaptic connections.

EXTRAPYRAMIDAL

The extrapyramidal motor system is a simplification of the basal ganglia, which also involves the circuits in habit memory.

HIPPOCAMPUS

Curved elevation of grey matter extending the entire length of the floor of the temporal horn of the lateral ventricle.

LONG-TERM POTENTIATION

(LTP). A long-lasting increase in current passing through a synapse.

LONG-TERM DEPRESSION

(LTD). A long-lasting reduction in current passing through a synapse.

PREFRONTAL CORTEX

The anterior part of the frontal cortex.

QTC PROLONGATION

Prolongation of the QT interval of the electrocardiogram, leading to a risk of arrhythmias.

RAPHE SYSTEM

The tracts of neurons involved in serotoninergic neurotrasmission.

TRANSNOSOGRAPHIC

Nosography is the description of diseases; a transnosographic approach is necessary if several psychiatric disorders may have common causes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spedding, M., Jay, T., e Silva, J. et al. A pathophysiological paradigm for the therapy of psychiatric disease. Nat Rev Drug Discov 4, 467–476 (2005). https://doi.org/10.1038/nrd1753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing