Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Building better magic bullets — improving unconjugated monoclonal antibody therapy for cancer

Abstract

The potential of monoclonal antibodies to effectively treat cancer is beginning to be widely acknowledged. Advances in antibody engineering make it possible to produce various recombinant proteins that exploit the specificity of the antibody-combining site to manipulate tumour-related signalling, and to stimulate anti-tumour immune responses. Future advances in the field will rely on the improved identification of functional antibody targets to perturb cancer-relevant signalling, and by the improved selection of tumours that can be effectively treated. These advances will be complemented by the use of antibodies that induce clinically meaningful host-protective immune responses. But, can we afford this progress?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of a human IgG antibody.

Similar content being viewed by others

References

  1. Ehrlich, P. Nobel Lectures, Physiology or Medicine 1901–1921. 304–320 (Elsevier Publishing Company, Amsterdam, 1967).

    Google Scholar 

  2. Witzig T. E. et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 20, 2453–2463 (2002).

    Article  CAS  Google Scholar 

  3. Kaminski, M. S. et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 96, 1259–1266 (2000).

    CAS  PubMed  Google Scholar 

  4. Sievers, E. L. et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93, 3678–3684 (1999).

    CAS  PubMed  Google Scholar 

  5. Kreitman, R. J. et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N. Engl. J. Med. 345, 241–247 (2001).

    Article  CAS  Google Scholar 

  6. Kohler, G & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  Google Scholar 

  7. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  Google Scholar 

  8. Miller, R. A., Maloney, D. G., Warnke, R. & Levy, R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N. Engl. J. Med. 306, 517–522 (1982).

    Article  CAS  Google Scholar 

  9. McLaughlin, P. et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. 16, 2825–2833 (1998).

    CAS  PubMed  Google Scholar 

  10. Osterborg, A. et al. Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European Study Group of CAMPATH-1H Treatment in Chronic Lymphocytic Leukemia. J. Clin. Oncol. 15, 1567–1574 (1997).

    Article  CAS  Google Scholar 

  11. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    Article  CAS  Google Scholar 

  12. Gibson, T. B., Ranganathan, A. & Grothey, A. Randomized phase III trial results of panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody, in metastatic colorectal cancer. Clin. Colorectal Cancer 6, 13 (2006).

    Article  Google Scholar 

  13. Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003).

    CAS  Google Scholar 

  14. Hodi, F. S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA 100, 4712–4717 (2003).

    Article  CAS  Google Scholar 

  15. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  Google Scholar 

  16. LoBuglio, A. F. et al. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc. Natl Acad. Sci. USA 86, 4220–4224 (1989).

    Article  CAS  Google Scholar 

  17. Boulianne, G. L., Hozumi, N. & Shulman, M. J. Production of functional chimaeric mouse/human antibody. Nature 312, 634–646 (1984).

    Article  Google Scholar 

  18. Morrison, S. L. et al. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl Acad. Sci. USA 81, 6851–6855 (1984).

    Article  CAS  Google Scholar 

  19. Riechmann, L. et al. Reshaping human antibodies for therapy. Nature 332, 323–327 (1988).

    Article  CAS  Google Scholar 

  20. McCafferty, J. et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  Google Scholar 

  21. Weiner, L. M. Fully human therapeutic monoclonal antibodies. J. Immunother. 29, 1–9 (2006).

    Article  CAS  Google Scholar 

  22. Gelderman, K. A., Tomlinson, S., Ross, G. D. & Gorter, A. Complement function in mAb-mediated cancer immunotherapy. Trends Immunol. 25, 158–164 (2004).

    Article  CAS  Google Scholar 

  23. Shields, R. L. et al. High resolution mapping of the binding site on human IgG1 for Fc γ RI, Fc γ RII, Fc γ RIII, and FcRn and design of IgG1 variants with improved binding to the Fc γ R. J. Biol. Chem. 276, 6591–6604 (2001).

    Article  CAS  Google Scholar 

  24. Lazar, G. A. et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl Acad. Sci. USA 103, 4005–4010 (2006).

    Article  CAS  Google Scholar 

  25. Umana, P. et al. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nature Biotechnol. 17, 176–180 (1999).

    Article  CAS  Google Scholar 

  26. Mendelsohn, J. & Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene 19, 6550–6565 (2000).

    Article  CAS  Google Scholar 

  27. Olayioye, M. A., Neve, R. M., Lane, H. A. & Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167 (2000).

    Article  CAS  Google Scholar 

  28. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  CAS  Google Scholar 

  29. Holbro, T. Civenni, G. & Hynes, N. E. The ErbB receptors and their role in cancer progression. Exp. Cell Res. 284, 99–110 (2003).

    Article  CAS  Google Scholar 

  30. Franklin, M. C. et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5, 317–328 (2004).

    Article  CAS  Google Scholar 

  31. Yarden, Y. The EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. Eur. J. Cancer 37 Suppl. 4, S3–S8 (2001).

    Article  CAS  Google Scholar 

  32. Tai, Y. T. et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res. 65, 5898–5906 (2005).

    Article  CAS  Google Scholar 

  33. Vonderheide, R. H. et al. Clinical activity and immune modulation in cancer patients treated with CP-870, 893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol. 25, 876–883 (2007).

    Article  CAS  Google Scholar 

  34. Steplewski, Z., Lubeck M. D. & Koprowski, H. Human macrophages armed with murine immunoglobulin G2a antibodies to tumors destroy human cancer cells. Science 221, 865–867 (1983).

    Article  CAS  Google Scholar 

  35. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors: old friends and new family members. Immunity 24, 19–28 (2006).

    Article  CAS  Google Scholar 

  36. Iannello, A. & Ahmad, A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev. 24, 487–499 (2005).

    Article  CAS  Google Scholar 

  37. Clynes, R. A., Towers, T. L., Presta, L.G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Med. 6, 443–446 (2000).

    Article  CAS  Google Scholar 

  38. Weng, W. K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    Article  CAS  Google Scholar 

  39. Gorter, A. & Meri, S. Immune evasion of tumor cells using membrane-bound complement regulatory proteins. Immunol. Today 20, 576–582 (1999).

    Article  CAS  Google Scholar 

  40. Trikha, M., Yan, L. & Nakada, M. T. Monoclonal antibodies as therapeutics in oncology. Curr. Opin. Biotechnol. 13, 609–614 (2002).

    Article  CAS  Google Scholar 

  41. Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nature Biotechnol. 23, 1147–1157 (2005).

    Article  CAS  Google Scholar 

  42. Whitehurst, A. W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819 (2007).

    Article  CAS  Google Scholar 

  43. Imai, K. & Takaoka, A. Comparing antibody and small-molecule therapies for cancer. Nature Rev. Cancer 6, 714–727 (2006).

    Article  CAS  Google Scholar 

  44. Musolino, A. et al. Immunoglobulin G fragment C receptor polymorphisms and response to trastuzumab-based treatment in patients with HER-2/neu-positive metastatic breast cancer. Proc. AACR abstr. 4188, (2007).

  45. McCall, A. M. et al. Increasing the affinity for tumor antigen enhances bispecific antibody cytotoxicity. J. Immunol. 166, 6112–6117 (2001).

    Article  CAS  Google Scholar 

  46. Shahied, L. S. et al. Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen-binding format. J. Biol. Chem. 279, 53907–53914 (2004).

    Article  CAS  Google Scholar 

  47. Rafiq, K., Bergtold, A. & Clynes, R. Immune complex-mediated antigen presentation induces tumor immunity. J. Clin. Invest. 110, 71–79 (2002).

    Article  CAS  Google Scholar 

  48. Korman, A. J., Peggs, K. S. & Allison, J. P. Checkpoint blockade in cancer immunotherapy. Adv. Immunol. 90, 297–339 (2006).

    Article  CAS  Google Scholar 

  49. Sanderson, K. et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol. 23, 741–750 (2005).

    Article  CAS  Google Scholar 

  50. Sheridan, C. TeGenero fiasco prompts regulatory rethink. Nature Biotechnol. 24, 475–476 (2006).

    Article  CAS  Google Scholar 

  51. Hirano, F. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 65, 1089–1096 (2005).

    CAS  Google Scholar 

  52. Blank, C. et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int. J. Cancer 119, 317–327 (2006).

    Article  CAS  Google Scholar 

  53. Chung, K. Y. et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J. Clin. Oncol. 23, 1803–1810 (2005).

    Article  CAS  Google Scholar 

  54. Adams, G. P. et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 61, 4750–4755 (2001).

    CAS  PubMed  Google Scholar 

  55. Segal, D. M., Weiner, G. J. & Weiner, L. M. Bispecific antibodies in cancer therapy. Curr. Opin. Immunol. 11, 558–562 (1999).

    Article  CAS  Google Scholar 

  56. Valone, F. H. et al. Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-2/neu. J. Clin. Oncol. 13, 2281–2292 (1995).

    Article  CAS  Google Scholar 

  57. Weiner, L. M. et al. Phase I trial of 2B1, a bispecific monoclonal antibody targeting c-erbB-2 and FcγRIII. Cancer Res. 55, 4586–4593 (1995).

    CAS  PubMed  Google Scholar 

  58. Amoroso, A. R. et al. Binding characteristics and antitumor properties of 1A10 bispecific antibody recognizing gp40 and human transferrin receptor. Cancer Res. 56, 113–120 (1996).

    CAS  PubMed  Google Scholar 

  59. Lu, D. et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J. Biol. Chem. 280, 19665–19672 (2005).

    Article  CAS  Google Scholar 

  60. Jackson, J. G. et al. Blockade of epidermal growth factor- or heregulin-dependent ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects. Cancer Res. 64, 2601–2609 (2004).

    Article  CAS  Google Scholar 

  61. Yokota, T., Milenic, D. E., Whitlow, M. & Schlom, J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52, 3402–3408 (1992).

    CAS  PubMed  Google Scholar 

  62. Wong, J. Y. et al. Pilot trial evaluating an 123I labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer. Clin. Cancer Res. 10, 5014–5021 (2004).

    Article  CAS  Google Scholar 

  63. Adams, G. P. et al. Prolonged in vivo tumor retention of a human diabody targeting the extracellular domain of human HER2/neu. Brit. J. Cancer 77, 1405–1412 (1998).

    Article  CAS  Google Scholar 

  64. Huston, J. S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl Acad. Sci. USA 85, 5879–5883 (1988).

    Article  CAS  Google Scholar 

  65. Winkelmayer, W. C. et al. Health economic evaluations: the special case of end-stage renal disease treatment. Med. Decis. Making 22, 417–430 (2002).

    Article  Google Scholar 

  66. Draviam, V. M. et al. A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling. Nature Cell Biol. 9, 556–564 (2007).

    Article  CAS  Google Scholar 

  67. Janeway, C. A. Jr & Travers, P. (eds). Immunobiology – the immune system in health and disease. Current Biology Ltd, London, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Fox Chase Cancer Center

Glossary

Antibody valence

The number of different molecules an antibody can combine with at one time.

B-cell idiotype

A unique immunoglobulin sequence variant, typically in the antibody complementarity-determining regions (CDRs).

Bispecific antibodies

Antibodies with two distinct binding specificities (such as ERBB2 and CD16), which can be prepared by fusing two distinct hybridomas, through chemical conjugation, or using recombinant antibody engineering techniques.

Complement

A heat-labile component of normal plasma that contains many proteins acting together to augment opsonization of targets by antibodies and promote antibody-mediated target destruction by forming membrane-attack complexes that form pores in target cell membranes, and also leads to clearance of immune complexes.

Diabodies

Recombinant antibodies composed of two single-chain Fv molecules joined by a very short amino acid linker that 'forces' the protein into a divalent binding format that confers intermediate properties compared with the scFv and minibody formats.

Minibodies

Recombinant antibodies composed of scFvs fused to antibody Fc domain elements to create a divalent molecule with pharmacological properties that more closely resemble those of intact IgG immunoglobulins.

Single-chain Fv fragments

(scFv) Small (25 kDa) proteins that consist of variable-heavy and variable-light chain genes joined by a short amino acid linker that recapitulate an intact antibody binding site, but exhibit rapid tumour penetration and systemic clearance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, L. Building better magic bullets — improving unconjugated monoclonal antibody therapy for cancer. Nat Rev Cancer 7, 701–706 (2007). https://doi.org/10.1038/nrc2209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing