Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain

Abstract

Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO2) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1–2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO2 level, which is better suited to a more experienced, postdoctoral-level researcher.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A workflow describing different in vivo methods for studying brain hemodynamic responses and tissue oxygenation in mice.
Figure 2: Two-photon microscopy measurements of individual brain capillary diameter changes in the somatosensory cortex in response to electrical stimulus in an anesthetized wild-type mouse (Step 18B).
Figure 3: Two-photon microscopy measurements of vascular RBC velocity changes in response to electrical stimulus in the somatosensory cortex of an anesthetized wild-type mouse (Step 18B).
Figure 4: IOS imaging of regional hemodynamic response to green 530-nm illumination in in the somatosensory cortex of an anesthetized mouse (Step 18A).
Figure 5: IOS imaging of regional hemodynamic response with red 630-nm illumination of the somatosensory cortex in an anesthetized mouse (Step 18A).
Figure 6: Dissecting microscope configured for IOS imaging.
Figure 7: Two-photon measurements of NADH fluorescence intensity changes in response to a stimulus in the somatosensory cortex of an anesthetized pericyte-deficient mouse (carrying a single platelet-derived growth factor receptor β allele; Pdgfrb+/−), which exhibits altered metabolic responses to a stimulus (Step 18C).
Figure 8: Two-photon acquisition of absolute tissue pO2 values in the mouse cortex using PtP-C343 phosphorescent dye (Box 1).
Figure 9: Cranial window preparation for in vivo imaging (Steps 1–17).

Similar content being viewed by others

References

  1. Kety, S.S. The general metabolism of the brain in vivo. in Metabolism of the Nervous System 221–237 (ed. D. Richter) (Elsevier, 1957).

  2. Sokoloff, L. The metabolism of the central nervous system in vivo. in Handbook of Physiology, Section I, Neurophysiology (eds. Field, J., Magoun, H. W. & Hall, V. E.) 3, 1843–1864 (American Physiological Society, 1960).

  3. Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sweeney, M.D., Sagare, A.P. & Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Kisler, K., Nelson, A.R., Montagne, A. & Zlokovic, B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18, 419–434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arvanitakis, Z., Capuano, A.W., Leurgans, S.E., Bennett, D.A. & Schneider, J.A. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 15, 934–943 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iturria-Medina, Y. et al. Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montagne, A. et al. Brain imaging of neurovascular dysfunction in Alzheimer's disease. Acta Neuropathol. (Berl.) 131, 687–707 (2016).

    Article  CAS  Google Scholar 

  10. Montagne, A., Zhao, Z. & Zlokovic, B.V. Alzheimer's disease: a matter of blood–brain barrier dysfunction? J. Exp. Med. 214, 3151–3169 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy, M.J. et al. Widespread cerebral haemodynamics disturbances occur early in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 13, 202–209 (2012).

    Article  PubMed  Google Scholar 

  12. Ishikawa, T., Morita, M. & Nakano, I. Constant blood flow reduction in premotor frontal lobe regions in ALS with dementia - a SPECT study with 3D-SSP. Acta Neurol. Scand. 116, 340–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Yamashita, T. et al. Flow-metabolism uncoupling in the cervical spinal cord of ALS patients. Neurol. Sci. 38, 659–665 (2017).

    Article  PubMed  Google Scholar 

  14. Verfaillie, S.C.J. et al. Cerebral perfusion and glucose metabolism in Alzheimer's disease and frontotemporal dementia: two sides of the same coin? Eur. Radiol. 25, 3050–3059 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Malek, N. et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson's disease. Mov. Disord. 31, 1518–1526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Al-Bachari, S., Vidyasagar, R., Emsley, H.C. & Parkes, L.M. Structural and physiological neurovascular changes in idiopathic Parkinson's disease and its clinical phenotypes. J. Cereb. Blood Flow Metab. 37, 3409–3421 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Drouin-Ouellet, J. et al. Cerebrovascular and blood-brain barrier impairments in Huntington's disease: potential implications for its pathophysiology. Ann. Neurol. 78, 160–177 (2015).

    Article  PubMed  Google Scholar 

  18. Chen, J.J., Salat, D.H. & Rosas, H.D. Complex relationships between cerebral blood flow and brain atrophy in early Huntington's disease. NeuroImage 59, 1043–1051 (2012).

    Article  PubMed  Google Scholar 

  19. Wardlaw, J.M., Smith, C. & Dichgans, M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 12, 483–497 (2013).

    Article  PubMed  Google Scholar 

  20. Wardlaw, J.M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Montine, T.J. et al. Recommendations of the Alzheimer's disease-related dementias conference. Neurology 83, 851–860 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Snyder, H.M. et al. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement. 11, 710–717 (2015).

    Article  PubMed  Google Scholar 

  23. Hachinski, V. & World Stroke Organization Stroke and potentially preventable dementias proclamation: updated World Stroke Day Proclamation. Stroke 46, 3039–3040 (2015).

    Article  PubMed  Google Scholar 

  24. Faraco, G. & Iadecola, C. Hypertension: a harbinger of stroke and dementia. Hypertension 62, 810–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Last, D. et al. Global and regional effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity. Diabetes Care 30, 1193–1199 (2007).

    Article  PubMed  Google Scholar 

  26. Ingrisch, M. et al. Quantification of perfusion and permeability in multiple sclerosis: dynamic contrast-enhanced MRI in 3D at 3T. Invest. Radiol. 47, 252–258 (2012).

    Article  PubMed  Google Scholar 

  27. De Roos, A., van der Grond, J., Mitchell, G. & Westenberg, J. Magnetic resonance imaging of cardiovascular function and the brain: is dementia a cardiovascular-driven disease? Circulation 135, 2178–2195 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qiu, C. & Fratiglioni, L. A major role for cardiovascular burden in age-related cognitive decline. Nat. Rev. Cardiol. 12, 267–277 (2015).

    Article  PubMed  Google Scholar 

  29. Lok, J. et al. Targeting the neurovascular unit in brain trauma. CNS Neurosci. Ther. 21, 304–308 (2015).

    Article  PubMed  Google Scholar 

  30. Toth, P. et al. Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling: pathomechanisms, perspectives, and therapeutic implications. Am. J. Physiol. Heart Circ. Physiol. 311, H1118–H1131 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Najjar, S. et al. Neurovascular unit dysfunction and blood-brain barrier hyperpermeability contribute to Schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front. Psychiatry 8, 83 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ances, B., Vaida, F., Ellis, R. & Buxton, R. Test-retest stability of calibrated BOLD-fMRI in HIV- and HIV+ subjects. NeuroImage 54, 2156–2162 (2011).

    Article  PubMed  Google Scholar 

  33. Iadecola, C. et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat. Neurosci. 2, 157–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Niwa, K. et al. Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc. Natl. Acad. Sci. USA 97, 9735–9740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chow, N. et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype. Proc. Natl. Acad. Sci. USA 104, 823–828 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyazaki, K. et al. Early and progressive impairment of spinal blood flow—glucose metabolism coupling in motor neuron degeneration of ALS model mice. J. Cereb. Blood Flow Metab. 32, 456–467 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Kleinberger, G. et al. The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J. 36, 1837–1853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toth, P. et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J. Cereb. Blood Flow Metab. 33, 1732–1742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Faraco, G. et al. Hypertension enhances Aβ-induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP. J. Cereb. Blood Flow Metab. 36, 241–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kisler, K. et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, T.N. et al. Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals. PLoS One 7, e38590 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harrison, T.C., Sigler, A. & Murphy, T.H. Simple and cost-effective hardware and software for functional brain mapping using intrinsic optical signal imaging. J. Neurosci. Methods 182, 211–218 (2009).

    Article  PubMed  Google Scholar 

  43. Hillman, E.M.C. Optical brain imaging in vivo: techniques and applications from animal to man. J. Biomed. Opt. 12, 051402 (2007).

    Article  PubMed  Google Scholar 

  44. Sirotin, Y.B., Hillman, E.M.C., Bordier, C. & Das, A. Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates. Proc. Natl. Acad. Sci. USA 106, 18390–18395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frostig, R.D., Lieke, E.E., Ts'o, D.Y. & Grinvald, A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kasischke, K.A., Vishwasrao, H.D., Fisher, P.J., Zipfel, W.R. & Webb, W.W. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Mayevsky, A. & Rogatsky, G.G. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am. J. Physiol. Cell Physiol. 292, C615–C640 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. Finikova, O.S. et al. Oxygen microscopy by two-photon-excited phosphorescence. Chemphyschem 9, 1673–1679 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gama Sosa, M.A. et al. Age-related vascular pathology in transgenic mice expressing Presenilin 1-associated familial Alzheimer's disease mutations. Am. J. Pathol. 176, 353–368 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Blair, L.J. et al. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol. Commun. 3 (2015).

  51. Lewis, J. et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Bell, R.D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alata, W., Ye, Y., St-Amour, I., Vandal, M. & Calon, F. Human apolipoprotein Ež4 expression impairs cerebral vascularization and blood-brain barrier function in mice. J. Cereb. Blood Flow Metab. 35, 86–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Nelson, A.R., Sweeney, M.D., Sagare, A.P. & Zlokovic, B.V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim. Biophys. Acta 1862, 887–900 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Park, L. et al. Brain and circulating levels of A 1-40 differentially contribute to vasomotor dysfunction in the mouse brain. Stroke 44, 198–204 (2013).

    Article  PubMed  Google Scholar 

  56. Poliakova, T., Levin, O., Arablinskiy, A., Vasenina, E. & Zerr, I. Cerebral microbleeds in early Alzheimer's disease. J. Neurol. 263, 1961–1968 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Manaenko, A., Chen, H., Zhang, J.H. & Tang, J. Comparison of different preclinical models of intracerebral hemorrhage. in Intracerebral Hemorrhage Research (eds. Zhang, J. & Colohan, A.) 111, 9–14 (Springer, 2011).

    Article  Google Scholar 

  58. Petraglia, A.L., Marky, A.H., Walker, C., Thiyagarajan, M. & Zlokovic, B.V. Activated protein C is neuroprotective and mediates new blood vessel formation and neurogenesis after controlled cortical impact. Neurosurgery 66, 165–171 (2010).

    Article  PubMed  Google Scholar 

  59. Toda, N. & Okamura, T. Hyperhomocysteinemia impairs regional blood flow: involvements of endothelial and neuronal nitric oxide. Pflugers Arch. 468, 1517–1525 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Sudduth, T.L., Powell, D.K., Smith, C.D., Greenstein, A. & Wilcock, D.M. Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J. Cereb. Blood Flow Metab. 33, 708–715 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hardigan, T., Hernandez, C., Ward, R., Hoda, M.N. & Ergul, A. TLR2 knockout protects against diabetes-mediated changes in cerebral perfusion and cognitive deficits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R927–R937 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Iordanova, B., Li, L., Clark, R.S.B. & Manole, M.D. Alterations in cerebral blood flow after resuscitation from cardiac arrest. Front. Pediatr. 5, 174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Khan, M.B. et al. Chronic remote ischemic conditioning is cerebroprotective and induces vascular remodeling in a VCID model. Transl. Stroke Res. 9, 51–63 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhao, Z., Nelson, A.R., Betsholtz, C. & Zlokovic, B.V. Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064–1078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Winkler, E.A. et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guemez-Gamboa, A. et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 47, 809–813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lacombe, P., Oligo, C., Domenga, V., Tournier-Lasserve, E. & Joutel, A. Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke 36, 1053–1058 (2005).

    Article  PubMed  Google Scholar 

  69. Joutel, A. et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J. Clin. Invest. 120, 433–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharma, A. & Shiras, A. Cancer stem cell-vascular endothelial cell interactions in glioblastoma. Biochem. Biophys. Res. Commun. 473, 688–692 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Dai, M., Yang, Y. & Shi, X. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS. Am. J. Physiol. Heart Circ. Physiol. 301, H1248–H1254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martinez Sosa, S. & Smith, K.J. Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin. Sci. Lond. 131, 2503–2524 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Tang, P. et al. In vivo two-photon imaging of axonal dieback, blood flow, and calcium influx with methylprednisolone therapy after spinal cord injury. Sci. Rep. 5, 9691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Montagne, A. et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24, 326–337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Uhlirova, H. et al. Cell type specificity of neurovascular coupling in cerebral cortex. eLife 5 e14315 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kasischke, K.A. et al. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J. Cereb. Blood Flow Metab. 31, 68–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Sakadži´, S. et al. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat. Commun. 5, 5734 (2014).

    Article  CAS  Google Scholar 

  78. Shahram, M. & Milanfar, P. Imaging below the diffraction limit: a statistical analysis. IEEE Trans. Image Process. 13, 677–689 (2004).

    Article  PubMed  Google Scholar 

  79. Ram, S., Ward, E.S. & Ober, R.J. Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl. Acad. Sci. USA 103, 4457–4462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rayleigh, L. XXXI: Investigations in optics, with special reference to the spectroscope. Philos. Mag. Ser. 5 8, 261–274 (1879).

    Article  Google Scholar 

  81. Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47, 617–644 (1928).

    Article  Google Scholar 

  82. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  Google Scholar 

  83. Pawley, J.B. Points, pixels, and gray levels: digitizing image data. in Handbook of Biological Confocal Microscopy (ed. Pawley, J.B.) 59–79 (Springer, 2006).

  84. Hall, C.N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mishra, A. et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat. Neurosci. 19, 1619–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Otsu, Y. et al. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat. Neurosci. 18, 210–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Kornfield, T.E. & Newman, E.A. Regulation of blood flow in the retinal trilaminar vascular network. J. Neurosci. 34, 11504–11513 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Biesecker, K.R. et al. Glial cell calcium signaling mediates capillary regulation of blood flow in the retina. J. Neurosci. 36, 9435–9445 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Drew, P.J., Shih, A.Y. & Kleinfeld, D. Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proc. Natl. Acad. Sci. USA 108, 8473–8478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Hill, R.A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Damisah, E.C., Hill, R.A., Tong, L., Murray, K.N. & Grutzendler, J. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat. Neurosci. 20, 1023–1032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wei, H.S. et al. Erythrocytes are oxygen-sensing regulators of the cerebral microcirculation. Neuron 91, 851–862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chang, C.-I., Du, Y., Wang, J., Guo, S.-M. & Thouin, P.D. Survey and comparative analysis of entropy and relative entropy thresholding techniques. IEE Proc. - Vis. Image Signal Process. 153, 837 (2006).

    Article  Google Scholar 

  95. Drew, P.J., Blinder, P., Cauwenberghs, G., Shih, A.Y. & Kleinfeld, D. Rapid determination of particle velocity from space-time images using the Radon transform. J. Comput. Neurosci. 29, 5–11 (2010).

    Article  PubMed  Google Scholar 

  96. Summers, P.M., Taylor, Z.J. & Shih, A.Y. Two-photon imaging of cerebral vasodynamics in awake mice during health and disease. in Advances in Intravital Microscopy (ed. Weigert, R.) 25–43 (Springer, 2014).

  97. Art, J. Photon detectors for confocal microscopy. in Handbook of Biological Confocal Microscopy (ed. Pawley, J.B.) 251–264 (Springer, 2006).

  98. Baran, U. & Wang, R.K. Review of optical coherence tomography based angiography in neuroscience. Neurophotonics 3, 010902 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Srinivasan, V.J. et al. OCT methods for capillary velocimetry. Biomed. Opt. Express 3, 612–629 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ma, Y. et al. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150360 (2016).

    Article  Google Scholar 

  101. Wang, Y. et al. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nat. Med. 22, 1050–1055 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Berndt, N., Kann, O. & Holzhütter, H.-G. Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients. J. Cereb. Blood Flow Metab. 35, 1494–1506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yaseen, M.A. et al. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH. Biomed. Opt. Express 4, 307–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yaseen, M.A. et al. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo. Biomed. Opt. Express 8, 2368–2385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Baraghis, E. et al. Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response. J. Biomed. Opt. 16, 106003 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Zhao, Y. et al. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD+/NADH redox state. Nat. Protoc. 11, 1345–1359 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Mongeon, R., Venkatachalam, V. & Yellen, G. Cytosolic NADH-NAD(+) redox visualized in brain slices by two-photon fluorescence lifetime biosensor imaging. Antioxid. Redox Signal. 25, 553–563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vanderkooi, J.M., Maniara, G., Green, T.J. & Wilson, D.F. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 262, 5476–5482 (1987).

    Article  CAS  PubMed  Google Scholar 

  109. Becker, W. Fluorescence lifetime imaging - techniques and applications: fluorescence lifetime imaging. J. Microsc. 247, 119–136 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Sakadzi´, S. et al. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression. Appl. Opt. 48, D169–D177 (2009).

    Article  Google Scholar 

  111. Wilson, D.F. et al. Effect of hyperventilation on oxygenation of the brain cortex of newborn piglets. J. Appl. Physiol. 70, 2691–2696 (1991).

    Article  CAS  PubMed  Google Scholar 

  112. Wilson, D.F., Gomi, S., Pastuszko, A. & Greenberg, J.H. Microvascular damage in the cortex of cat brain from middle cerebral artery occlusion and reperfusion. J. Appl. Physiol. 74, 580–589 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Yaseen, M.A. et al. Optical monitoring of oxygen tension in cortical microvessels with confocal microscopy. Opt. Express 17, 22341–22350 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Sakadzi´, S. et al. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat. Methods 7, 755–759 (2010).

    Article  CAS  Google Scholar 

  115. Lecoq, J. et al. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat. Med. 17, 893–898 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Devor, A. et al. 'Overshoot' of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31, 13676–13681 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lyons, D.G., Parpaleix, A., Roche, M. & Charpak, S. Mapping oxygen concentration in the awake mouse brain. eLife 5, e12024 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kazmi, S.M.S. et al. Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion. Biomed. Opt. Express 4, 1061 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Spencer, J.A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yaseen, M.A. et al. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism. Biomed. Opt. Express 6, 4994–5007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kalmbach, A.S. & Waters, J. Brain surface temperature under a craniotomy. J. Neurophysiol. 108, 3138–3146 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Shirey, M.J. et al. Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature. J. Neurophysiol. 114, 309–322 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Goldey, G.J. et al. Removable cranial windows for long-term imaging in awake mice. Nat. Protoc. 9, 2515–2538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rumsey, W.L., Vanderkooi, J.M. & Wilson, D.F. Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science 241, 1649–1651 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Mik, E.G., van Leeuwen, T.G., Raat, N.J. & Ince, C. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements. J. Appl. Physiol. 97, 1962–1969 (2004).

    Article  PubMed  Google Scholar 

  126. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Polesskaya, O. et al. Detection of microregional hypoxia in mouse cerebral cortex by two-photon imaging of endogenous NADH fluorescence. J. Vis. Exp. (60) (2012).

  128. Shih, A.Y., Mateo, C., Drew, P.J., Tsai, P.S. & Kleinfeld, D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J. Vis. Exp. 61, 3742 (2012).

    Google Scholar 

  129. Tallquist, M.D., French, W.J. & Soriano, P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 1, E52 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Sakadži´, S. et al. Cerebral blood oxygenation measurement based on oxygen-dependent quenching of phosphorescence. J. Vis. Exp. (2011), (51).

  133. Sinks, L.E. et al. Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles. J. Phys. Chem. B 114, 14373–14382 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R01AG023084, R01NS090904, R01NS034467, R01AG039452, R01NS100459, and P01AG052350 to B.V.Z.; grants R24NS092986, R01EB018464, and R01NS091230 to S.S., S.A.V., and D.A.B.; by funding from the Alzheimer's Association and Cure Alzheimer's fund to B.V.Z.; and by funding from the Fondation Leducq Transatlantic Network of Excellence for the Study of Perivascular Spaces in Small Vessel Disease (ref. no. 16 CVD 05) to B.V.Z. We thank R. Jaswal for helping to create Figure 8. We gratefully acknowledge the feedback, forum posts, and questions from our peers regarding the techniques presented here, which provided the inspiration for the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and B.V.Z. conceived the concept presented here. K.K., S.S., and B.V.Z. contributed to the experimental design. K.K. and S.S. performed experiments and analyzed the data. D.L. and M.D.S. performed experiments and contributed to cranial window protocol development, and S.P. and M.E.K. contributed to PtP-C343 dye development. D.A.B. and S.A.V. contributed to the project design. B.V.Z. contributed to the project design and supervised the project. K.K., S.S., and B.V.Z. wrote the manuscript with input from all authors. S.S. and B.V.Z. shared senior authorship responsibilities.

Corresponding author

Correspondence to Berislav V Zlokovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1. (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisler, K., Lazic, D., Sweeney, M. et al. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat Protoc 13, 1377–1402 (2018). https://doi.org/10.1038/nprot.2018.034

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.034

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing