Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin

Abstract

Synthetic polymer nanoparticles (NPs) with intrinsic affinity for target biomacromolecules hold great promise in the development of novel tools for biological and biomedical research. We recently reported the design and synthesis of abiotic, synthetic polymer NPs with high intrinsic affinity for a peptide toxin melittin. The NP was selected by screening a small library of NPs (āˆ¼100 nm) composed of various ratios of monomers that contain functional groups complementary to the peptide melittin. The selected polymer NP, a co-polymer of acrylic acid (AAc), N-tert-butylacrylamide (TBAm), N-isopropylacrylamide (NIPAm) and N,Nā€²-methylenebisacrylamide (BIS), effectively captures and neutralizes the toxicity of the peptide through a combination of electrostatic and hydrophobic interactions. This protocol describes a step-by-step procedure for the preparation and evaluation of synthetic polymer NPs for sequestration and neutralization of the target peptide toxin. The polymer NPs can be synthesized in a one-step polymerization reaction using commercially available reagents. The polymerization reaction for the synthesis of polymer NPs takes several hours, and the total protocol including subsequent purification and characterization by dynamic light scattering, NMR and toxicity neutralization assays takes 1ā€“2 weeks in total.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equipment setup for filtration using a BĆ¼chner filter funnel, a qualitative filter paper and a rubber filter adapter.
Figure 2: Equipment setup for nitrogen purging of pre-polymerization solution.
Figure 3: Typical results of polymer NP characterization.

Similar content being viewed by others

References

  1. Kasturiratne, A. et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591ā€“1604 (2008).

    ArticleĀ  Google ScholarĀ 

  2. Gutierrez, J., Williams, D., Fan, H. & Warrell, D. Snakebite envenoming from a global perspective: towards an integrated approach. Toxicon 56, 1223ā€“1235 (2010).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Rainey, G. & Young, J. Antitoxins: novel strategies to target agents of bioterrorism. Nat. Rev. Microbiol. 2, 721ā€“726 (2004).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Espino-Solis, G., Riano-Umbarila, L., Becerril, B. & Possani, L. Antidotes against venomous animals: state of the art and prospectives. J. Proteomics 72, 183ā€“199 (2009).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Spiller, H., Bosse, G. & Ryan, M. Use of antivenom for snakebites reported to United States poison centers. Am. J. Emerg. Med. 28, 780ā€“785 (2010).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  6. Simpson, I. Time for an alternative perspective: the eternal problem of supply and quality of anti snake venom in the developing worldā€”'It's the economy, stupid'. Wilderness Environ. Med. 19, 186ā€“194 (2008).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Hoshino, Y., Kodama, T., Okahata, Y. & Shea, K.J. Peptide imprinted polymer nanoparticles: a plastic antibody. J. Am. Chem. Soc. 130, 15242ā€“15243 (2008).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Hoshino, Y. et al. Design of synthetic polymer nanoparticles that capture and neutralize a toxic peptide. Small 5, 1562ā€“1568 (2009).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Hoshino, Y. et al. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proc. Natl. Acad. Sci. USA 109, 33ā€“38 (2012).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Hu, C., Fang, R., Copp, J., Luk, B. & Zhang, L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 8, 336ā€“340 (2013).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Weisman, A., Chen, Y.A., Hoshino, Y., Zhang, H. & Shea, K.J. Engineering nanoparticle antitoxins utilizing aromatic interactions. Biomacromolecules 15, 3290ā€“3295 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Yoshimatsu, K. et al. Epitope discovery for a synthetic polymer nanoparticle: a new strategy for developing a peptide tag. J. Am. Chem. Soc. 136, 1194ā€“1197 (2014).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Mahon, C.S. & Fulton, D.A. Mimicking nature with synthetic macromolecules capable of recognition. Nat. Chem. 6, 665ā€“672 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Hoshino, Y., Lee, H. & Miura, Y. Interaction between synthetic particles and biomacromolecules: fundamental study of nonspecific interaction and design of nanoparticles that recognize target molecules. Polym. J. 46, 537ā€“545 (2014).

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Pelton, R. & Chibante, P. Preparation of aqueous lattices with N-isopropylacylamide. Colloids Surf. 20, 247ā€“256 (1986).

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Pelton, R. Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci. 85, 1ā€“33 (2000).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Mcphee, W., Tam, K. & Pelton, R. Poly(N-isopropylacrylamide) lattices prepared with sodium dodecyl sulfate. J. Colloid Interface Sci. 156, 24ā€“30 (1993).

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Wu, X., Pelton, R., Hamielec, A., Woods, D. & Mcphee, W. The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym. Sci. 272, 467ā€“477 (1994).

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Ito, S. et al. Preparation of thermosensitive submicrometer gel particles with anionic and cationic charges. Langmuir 15, 4289ā€“4294 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Debord, J.D. & Lyon, L.A. Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures. Langmuir 19, 7662ā€“7664 (2003).

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Armarego, W.L.F. & Chai, C.L.L. Purification of Laboratory Chemicals 6th edn. (Butterworth Heinemann, Elsevier Inc., 2009).

  22. Haberman, E. & Zeuner, G. Comparative studies of native and synthetic melittins. Naunyn-Schmiedeberg's Arch. 270, 1ā€“9 (1971).

  23. Son, D. et al. Melittin inhibits vascular smooth muscle cell proliferation through induction of apoptosis via suppression of nuclear factor-kappa B and Akt activation and enhancement of apoptotic protein expression. J. Pharmacol. Exp. Ther. 317, 627ā€“634 (2006).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Li, B. et al. Growth arrest and apoptosis of the human hepatocellular carcinoma cell line Bel-7402 induced by melittin. Onkologie 29, 367ā€“371 (2006).

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Gajski, G. & Garaj-Vrhovac, V. Melittin: a lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 36, 697ā€“705 (2013).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Yoshimatsu, K. et al. Temperature-responsive ā€œcatch and releaseā€ of proteins by using multifunctional polymer-based nanoparticles. Angew. Chem. Int. Ed. Engl. 51, 2405ā€“2408 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Lee, S.-H. Engineered synthetic polymer nanoparticles as IgG affinity ligands. J. Am. Chem. Soc. 134, 15765ā€“15772 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Yonamine, Y. et al. Polymer nanoparticle-protein interface. Evaluation of the contribution of positively charged functional groups to protein affinity. ACS Appl. Mater. Interfaces 5, 374ā€“379 (2013).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Nayak, S. & Lyon, L.A. Soft nanotechnology with soft nanoparticles. Angew. Chem. Int. Ed. Engl. 44, 7686ā€“7708 (2005).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Kawaguchi, H. Thermoresponsive microhydrogels: preparation, properties and applications. Polym. Int. 63, 925ā€“932 (2014).

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Islam, M., Gao, Y., Li, X. & Serpe, M. Responsive polymers for biosensing and protein delivery. J. Mater. Chem. B 2, 2444ā€“2451 (2014).

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Cedervall, T. et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 104, 2050ā€“2055 (2007).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Lindman, S. et al. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 7, 914ā€“920 (2007).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Linse, S. et al. Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. USA 104, 8691ā€“8696 (2007).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Cabaleiro-Lago, C. et al. Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 130, 15437ā€“15443 (2008).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Cabaleiro-Lago, C., Lynch, I., Dawson, K.A. & Linse, S. Inhibition of IAPP and IAPP((20-29)) fibrillation by polymeric nanoparticles. Langmuir 26, 3453ā€“3461 (2010).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Luchini, A. et al. Smart hydrogel particles: Biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett. 8, 350ā€“361 (2008).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Smith, M.H. & Lyon, L.A. Tunable encapsulation of proteins within charged microgels. Macromolecules 44, 8154ā€“8160 (2011).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Smith, M.H. & Lyon, L.A. Multifunctional nanogels for siRNA delivery. Acc. Chem. Res. 45, 985ā€“993 (2012).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Yonamine, Y., Hoshino, Y. & Shea, K.J. ELISA-mimic screen for synthetic polymer nanoparticles with high affinity to target proteins. Biomacromolecules 13, 2952ā€“2957 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Zeng, Z. et al. Synthetic polymer nanoparticle-polysaccharide interactions: a systematic study. J. Am. Chem. Soc. 134, 2681ā€“2690 (2012).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Beierle, J.M. et al. Polymer nanoparticle hydrogels with autonomous affinity switching for the protection of proteins from thermal stress. Angew. Chem. Int. Ed. Engl. 53, 9275ā€“9279 (2014).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Meunier, F., Elaissari, A. & Pichot, C. Preparation and characterization of cationic poly(N-isopropylacrylamide) copolymer latexes. Polym. Adv. Technol. 6, 489ā€“496 (1995).

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Hu, X., Tong, Z. & Lyon, L. Synthesis and physicochemical properties of cationic microgels based on poly(N-isopropylmethacrylamide). Colloid Polym. Sci. 289, 333ā€“339 (2011).

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Hoshino, Y., Imamura, K., Yue, M., Inoue, G. & Miura, Y. Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J. Am. Chem. Soc. 134, 18177ā€“18180 (2012).

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Hu, X., Tong, Z. & Lyon, L. Control of poly(N-isopropylacrylamide) microgel network structure by precipitation polymerization near the lower critical solution temperature. Langmuir 27, 4142ā€“4148 (2011).

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Candau, F., Leong, Y., Pouyet, G. & Candau, S. Inverse microemulsion polymerization of acrylamideā€”characterization of the water-in-oil microemulsions and the final microlatexes. J. Colloid Interface Sci. 101, 167ā€“183 (1984).

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Antonietti, M., Basten, R. & Lohmann, S. Polymerization in microemulsionsā€”a new approach to ultrafine, highly functionalized polymer dispersions. Macromol. Chem. Phys. 196, 441ā€“466 (1995).

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

This research was supported by the US National Science Foundation (DMR-1308363). H.K. is a recipient of the Japan Society for the Promotion of Science (JSPS) Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.Y., H.K., Y.H. and K.J.S. developed protocols. K.Y. and H.K. contributed all the data. K.Y., H.K. and K.J.S. wrote the paper. All authors have discussed the results and approved the final manuscript.

Corresponding author

Correspondence to Kenneth J Shea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 88 kb)

Supplementary Data 1

1H NMR spectrum (500 MHz, CD3OD) of polymer NP synthesized by the copolymerization of 5 mol% AAc, 40 mol% TBAm, 53 mol% NIPAm, and 2 mol% BIS (values are in monomer feed ratio). (ZIP 88 kb)

Supplementary Data 2

13C NMR spectrum (126 MHz, CD3OD) of polymer NP synthesized by the copolymerization of 5 mol% AAc, 40 mol% TBAm, 53 mol% NIPAm, and 2 mol% BIS (values are in monomer feed ratio). (ZIP 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimatsu, K., Koide, H., Hoshino, Y. et al. Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin. Nat Protoc 10, 595ā€“604 (2015). https://doi.org/10.1038/nprot.2015.032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.032

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter ā€” top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research