Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Activation and measurement of free whisking in the lightly anesthetized rodent

Abstract

The rodent vibrissa system is a widely used experimental model of active sensation and motor control. Vibrissa-based touch in rodents involves stereotypic, rhythmic sweeping of the vibrissae as the animal explores its environment. Although pharmacologically induced rhythmic movements have long been used to understand the neural circuitry that underlies a variety of rhythmic behaviors, including locomotion, digestion and ingestion, these techniques have not been available for active sensory movements such as whisking. However, recent work that delineated the location of the central pattern generator for whisking has enabled pharmacological control over this behavior. Here we specify a protocol for the pharmacological induction of rhythmic vibrissa movements that mimic exploratory whisking. The rhythmic vibrissa movements are induced by local injection of a glutamatergic agonist, kainic acid. This protocol produces coordinated rhythmic vibrissa movements that are sustained for several hours in the anesthetized mouse or rat and thus provides unprecedented experimental control in studies related to vibrissa-based neuronal circuitry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Target site for local injection of kainic acid to produce rhythmic vibrissa movements.
Figure 2: Diagram of experimental procedures to induce and measure kainic acid–induced vibrissa movements.
Figure 3: Kainic acid injection produces rhythmic vibrissa movements in rat.
Figure 4: Kainic acid injection produces rhythmic vibrissa movements in mouse.
Figure 5: Juxtacellular recordings in somatosensory brain regions during kainic acid–induced vibrissa movements.
Figure 6: Intracellular recording in a facial motoneuron during kainic acid–induced vibrissa movements.
Figure 7: Bilateral kainic acid injection produces independent vibrissa movements on the left and right sides of the face.

Similar content being viewed by others

References

  1. Cullen, K.E. Sensory signals during active versus passive movement. Curr. Opin. Neurobiol. 14, 698–706 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. von Holst, E. Relations between the central nervous system and the peripheral organ. Br. J. Animal Behav. 2, 89–94 (1954).

    Article  Google Scholar 

  3. Vincent, S.B. The tactile hair of the white rat. J. Comp. Neurol. 23, 1–23 (1913).

    Article  Google Scholar 

  4. Rice, F.L., Fundin, B.T., Arvidsson, J., Aldskogius, H. & Johansson, O. Comprehensive immunofluoresce and lectin binding study of the innervation of vibrissae follicle sinus complexes on the mystacial pad of the rat. J. Comp. Neurol. 385, 149–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Prescott, T.J., Diamond, M.E. & Wing, A.M. Active touch sensing. Philos. Trans. R Soc. Lond. B Biol. Sci. 366, 2989–2995 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kleinfeld, D. & Deschênes, M. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron 72, 455–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mitchinson, B. et al. Active vibrissal sensing in rodents and marsupials. Phil. Trans. R Soc. Lond. B Biol. Sci. 366, 3037–3048 (2011).

    Article  Google Scholar 

  8. Bosman, L.W.J. et al. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front. Integr. Neurosci. 5, 1 (2011).

    Article  Google Scholar 

  9. Kleinfeld, D., Ahissar, E. & Diamond, M.E. Active sensation: insights from the rodent vibrissa sensorimotor system. Curr. Opin. Neurobiol. 16, 435–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Brecht, M. Barrel cortex and whisker-mediated behaviors. Curr. Opin. Neurobiol. 17, 408–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Hill, D.N., Curtis, J.C., Moore, J.D. & Kleinfeld, D. Primary motor cortex reports efferent control of vibrissa position on multiple time scales. Neuron 72, 344–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berg, R.W. & Kleinfeld, D. Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J. Neurophysiol. 89, 104–117 (2003).

    Article  PubMed  Google Scholar 

  13. Moore, J.D. et al. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 469, 53–57 (2013).

    Google Scholar 

  14. Matyas, F. et al. Motor control by sensory cortex. Science 330, 1240–1243 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Brecht, M., Schneider, M., Sakmann, B. & Margrie, T. Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427, 704–710 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo, Z.V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen, Q.-T. & Kleinfeld, D. Positive feedback in a brainstem tactile sensorimotor loop. Neuron 45, 447–457 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Curtis, J.C. & Kleinfeld, D. Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat. Neurosci. 12, 492–501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).

    Article  CAS  Google Scholar 

  21. O'Connor, D.H. et al. Neural coding during active somatosensation revealed using illusory touch. Nat. Neurosci. 16, 958–965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gentet, L.J., Avermann, M., Matyas, F., Staiger, J.F. & Petersen, C.C.H. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Crochet, S. & Petersen, C.C.H. Correlating membrane potential with behaviour using whole-cell recordings from barrel cortex of awake mice. Nat. Neurosci. 9, 608–609 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Fee, M.S., Mitra, P.P. & Kleinfeld, D. Central versus peripheral determinates of patterned spike activity in rat vibrissa cortex during whisking. J. Neurophysiol. 78, 1144–1149 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Marder, E. & Calabrese, R.L. Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Getting, P.A. Emerging principles governing the operation of neural networks. Annu. Rev. Neurosci. 12, 185–204 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Grillner, S., McClellan, A., Sigvardt, K., Wallen, P. & Wilen, M.A. Activation of NMDA-receptors elicits 'fictive locomotion' in lamprey spinal cord in vitro. Acta Physiol. Scand. 113, 549–551 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Rossignol, S. & Dubuc, R. Spinal pattern generation. Curr. Opin. Neurobiol. 4, 894–902 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi, T. The central pattern generator for forelimb locomotion in the cat. Prog. Brain Res. 143, 114–122 (2004).

    Google Scholar 

  30. McCrea, D.A. Spinal circuitry of sensorimotor control of locomotion. J. Physiol. 533, 41–50 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cazalets, J., Sqalli-Houssaini, Y. & Clarac, F. Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J. Physiol. 455, 187–204 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stein, P.S., McCullough, M.L. & Currie, S.N. Spinal motor patterns in the turtle Ann. N Y Acad. Sci. 860, 142–154 (1998).

  33. Nakamura, Y., Katakura, N. & Nakajima, M. Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice. J. Med. Dent. Sci. 46, 63–73 (1999).

    CAS  PubMed  Google Scholar 

  34. Zucker, E. & Welker, W.I. Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion. Brain Res. 12, 134–156 (1969).

    Article  Google Scholar 

  35. Brown, A.W.S. & Waite, P.M.E. Responses in the rat thalamus to whisker movements produced by motor nerve stimulation. J. Physiol. 238, 387–401 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Szwed, M., Bagdasarian, K. & Ahissar, E. Coding of vibrissal active touch. Neuron 40, 621–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Yu, C., Derdikman, D., Haidarliu, S. & Ahissar, E. Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol. 4, e124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henneman, E. The size-principle: a deterministic output emerges from a set of probabilistic connections. J. Exp. Biol. 115, 105–112 (1985).

    CAS  PubMed  Google Scholar 

  39. Llewellyn, M.E., Thompson, K.R., Deisseroth, K. & Delp, S.L. Orderly recruitment of motor units under optical control in vivo. Nat. Med. 16, 1161–1165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kilkenny, C., Browne, W., Cuthill, I.C., Emerson, M. & Altman, D.G. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. & Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dirnagl, U. & Lauritzen, M. Improving the quality of biomedical research: guidelines for reporting experiments involving animals. J. Cereb. Blood Flow Metab. 31, 989–990 (2012).

    Article  Google Scholar 

  43. Gao, P., Hattox, A.M., Jones, L.M., Keller, A. & Zeigler, H.P. Whisker motor cortex ablation and whisker movement patterns. Somatosens. Mot. Res. 20, 191–198 (2003).

    Article  PubMed  Google Scholar 

  44. Hadlock, T.A., Kowaleski, J., Lo, D., Mackinnon, S.E. & Heaton, J.T. Rodent facial nerve recovery after selected lesions and repair techniques. Plast. Reconstr. Surg. 125, 99–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jongen-Rêlo, A.L. & Feldon, J. Specific neuronal protein: a new tool for histological evaluation of excitotoxic lesions. Physiol. Behav. 76, 449–456 (2002).

    Article  PubMed  Google Scholar 

  46. Lavallee, P. et al. Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J. Neurosci. 25, 7489–7498 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Welker, W.I. Analysis of sniffing of the albino rat. Behaviour 12, 223–244 (1964).

    Article  Google Scholar 

  48. Towal, R.B. & Hartmann, M.J. Variability in velocity profiles during free-air whisking behavior of unrestrained rats. J. Neurophysiol. 100, 740–752 (2008).

    Article  PubMed  Google Scholar 

  49. Hill, D.N., Bermejo, R., Zeigler, H.P. & Kleinfeld, D. Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. J. Neurosci. 28, 3438–3455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khatri, V., Bermejo, R., Brumberg, J.C. & Zeigler, H.P. Whisking in air: encoding of kinematics by VPM neurons in awake rats. Somatosens. Mot. Res. 27, 11–20 (2010).

    Article  Google Scholar 

  51. Khatri, V., Bermejo, R., Brumberg, J.C., Keller, A. & Zeigler, H.P. Whisking in air: encoding of kinematics by trigeminal ganglion neurons in awake rats. J. Neurophysiol. 101, 836–886 (2009).

    Google Scholar 

  52. Hellon, R. The marking of electrode tip positions in nervous tissue. J. Physiol. 214, 12O (1971).

    Google Scholar 

  53. Klein, B. & Rhoades, R. The representation of whisker follicle intrinsic musculature in the facial motor nucleus of the rat. J. Comp. Neurol. 232, 55–69 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. Mitchinson, B., Martin, C.J., Grant, R.A. & Prescott, T.J. Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc. R Soc. Lond. Biol. Sci. 274, 1035–1041 (2007).

    Article  Google Scholar 

  55. Towal, R.B. & Hartmann, M.J. Right-left asymmetries in the whisking behavior of rats anticipate movements. J. Neurosci. 26, 8838–8846 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hattox, A.M., Li, Y. & Keller, A. Serotonin regulates rhythmic whisking. Neuron 39, 343–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. van der Maelen, C. & Aghajanian, G. Intracellular studies showing modulation of facial motoneurone excitability by serotonin. Synapse 3, 331–338 (1980).

    Google Scholar 

  58. Harish, O. & Golomb, D. Control of the firing patterns of vibrissa motoneurons by modulatory and phasic synaptic inputs: a modeling study. J. Neurophysiol. 103, 2684–2699 (2010).

    Article  PubMed  Google Scholar 

  59. Pietr, M.D., Knutsen, P.M., Shore, D.I., Ahissar, E. & Vogel, Z. Cannabinoids reveal separate controls for whisking amplitude and timing in rats. J. Neurophysiol. 104, 2532–2542 (2010).

    Article  PubMed  Google Scholar 

  60. Wu, A.P. et al. Improved facial nerve identification with novel fluorescently labeled probe. Laryngoscope 121, 805–810 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Berens, P. CircStat: A MATLAB toolbox for circular statistics. J. Statist. Software 31, 1–21 (2009).

    Article  Google Scholar 

  62. Batschelet, E. Circular Statistics in Biology (Academic Press, 1981).

  63. Wong-Riley, M.T.T. Endogenous peroxidatic activity in brain stem neurons as demonstrated by their staining with diaminobenzidine in normal squirrel monkeys. Brain Res. 108, 257–277 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Neurological Disorders and Stroke (NS058668 and NS082097), the National Institute of Biomedical Imaging and Bioengineering (EB003832), the Canadian Institutes of Health Research (grant MT-5877) and the US-Israeli Binational Foundation (grant 2011432).

Author information

Authors and Affiliations

Authors

Contributions

M.D., D.K. and J.D.M. planned the experiments; M.D., A.K. and J.D.M. performed the experiments; A.K. and J.D.M. analyzed the data; D.K. and J.D.M. wrote the paper; D.K. dealt with the myriad university organizations that govern animal health and welfare, surgical procedures, and laboratory health and safety issues that include specific oversight of chemicals, controlled substances, human cell lines, lasers and viruses.

Corresponding author

Correspondence to David Kleinfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, J., Deschênes, M., Kurnikova, A. et al. Activation and measurement of free whisking in the lightly anesthetized rodent. Nat Protoc 9, 1792–1802 (2014). https://doi.org/10.1038/nprot.2014.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing