Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Two-way communication with neural networks in vivo using focused light

Abstract

Neuronal networks process information in a distributed, spatially heterogeneous manner that transcends the layout of electrodes. In contrast, directed and steerable light offers the potential to engage specific cells on demand. We present a unified framework for adapting microscopes to use light for simultaneous in vivo stimulation and recording of cells at fine spatiotemporal resolutions. We use straightforward optics to lock onto networks in vivo, to steer light to activate circuit elements and to simultaneously record from other cells. We then actualize this 'free' augmentation on both an 'open' two-photon microscope and a leading commercial one. By following this protocol, setup of the system takes a few days, and the result is a noninvasive interface to brain dynamics based on directed light, at a network resolution that was not previously possible and which will further improve with the rapid advance in development of optical reporters and effectors. This protocol is for physiologists who are competent with computers and wish to extend hardware and software to interface more fluidly with neuronal networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A general template for open, all-optical physiology on custom and commercial microscopes.
Figure 2: Steps necessary for the reduction of all-optical technology to routine practice in the laboratory.
Figure 3: Step-by-step guide to computer-guided imaging with higher signal to noise.
Figure 4: Enhancement of fidelity of action potential detection via computer-guided imaging in vitro and in vivo.
Figure 5: Direct methods for validation of optical signals as action potentials.
Figure 6: Optimization of reliable optogenetic activation for all-optical physiology.
Figure 7: Selective optical activation of single neurons in vivo during concurrent optical reporting.

Similar content being viewed by others

References

  1. Schwann, T. & Schleyden, M. Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants. (Sydenham Society, London, 1847).

  2. O'Connor, D.H., Huber, D. & Svoboda, K. Reverse-engineering the mouse brain. Nature 461, 923–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Regehr, W.G., Connor, J.A. & Tank, D.W. Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature 341, 533–536 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Smetters, D., Majewska, A. & Yuste, R. Detecting action potentials in neuronal populations with calcium imaging. Methods 18, 215–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shoham, S., O'Connor, D.H., Sarkisov, D.V. & Wang, S.S. Rapid neurotransmitter uncaging in spatially defined patterns. Nat. Methods 2, 837–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Pettit, D.L., Wang, S.S., Gee, K.R. & Augustine, G.J. Chemical two-photon uncaging: a novel approach to mapping glutamate receptors. Neuron 19, 465–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Arenkiel, B.R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peron, S. & Svoboda, K. From cudgel to scalpel: toward precise neural control with optogenetics. Nat. Methods 8, 30–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Schummers, J., Yu, H. & Sur, M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320, 1638–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Anastassiou, C.A., Perin, R., Markram, H. & Koch, C. Ephaptic coupling of cortical neurons. Nat. Neurosci. 14, 217–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Vervaeke, K., Lorincz, A., Nusser, Z. & Silver, R.A. Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science 335, 1624–1628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Nikolenko, V., Poskanzer, K.E. & Yuste, R. Two-photon photostimulation and imaging of neural circuits. Nat. Methods 4, 943–950 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Guo, Z.V., Hart, A.C. & Ramanathan, S. Optical interrogation of neural circuits in Caenorhabditis elegans. Nat. Methods 6, 891–896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Valmianski, I. et al. Automatic identification of fluorescently labeled brain cells for rapid functional imaging. J. Neurophysiol. 104, 1803–1811 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lillis, K.P., Eng, A., White, J.A. & Mertz, J. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution. J. Neurosci. Methods 172, 178–184 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grewe, B.F., Langer, D., Kasper, H., Kampa, B.M. & Helmchen, F. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7, 399–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Rothschild, G., Nelken, I. & Mizrahi, A. Functional organization and population dynamics in the mouse primary auditory cortex. Nat. Neurosci. 13, 353–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Wilson, N.R., Runyan, C.A., Wang, F.L. & Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerits, A. et al. Optogenetically induced behavioral and functional network changes in primates. Curr. Biol. 22, 1722–1726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adamantidis, A.R. et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J. Neurosci. 31, 10829–10835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grinvald, A. & Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chow, B.Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Y. & Tsien, R.W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 15, 1047–1053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zariwala, H.A. et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32, 3131–3141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanjana, N.E. et al. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyamichi, K. et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature 472, 191–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alivisatos, A.P. et al. The brain activity map project and the challenge of functional connectomics. Neuron 74, 970–974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wagenaar, D.A. & Potter, S.M. A versatile all-channel stimulator for electrode arrays, with real-time control. J. Neural. Eng. 1, 39–45 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Asaad, W.F. & Eskandar, E.N. A flexible software tool for temporally-precise behavioral control in Matlab. J. Neurosci. Methods 174, 245–258 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Suter, B.A. et al. Ephus: multipurpose data acquisition software for neuroscience experiments. Front. Neural. Circuits 4, 100 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Katona, G. et al. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9, 201–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Reddy, G.D. & Saggau, P. Fast three-dimensional laser scanning scheme using acousto-optic deflectors. J. Biomed. Opt. 10, 064038 (2005).

    Article  PubMed  Google Scholar 

  43. Kerlin, A.M., Andermann, M.L., Berezovskii, V.K. & Reid, R.C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oertner, T.G. The Lego-logic of optogenetics. Nat. Methods 8, 1011–1013 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Knopfel, T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat. Rev. Neurosci. 13, 687–700 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Yaksi, E. & Friedrich, R.W. Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat. Methods 3, 377–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Vogelstein, J.T. et al. Spike inference from calcium imaging using sequential Monte Carlo methods. Biophys. J. 97, 636–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Rickgauer, J.P. & Tank, D.W. Two-photon excitation of channelrhodopsin-2 at saturation. Proc. Natl. Acad. Sci. USA 106, 15025–15030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hirase, H., Nikolenko, V., Goldberg, J.H. & Yuste, R. Multiphoton stimulation of neurons. J. Neurobiol. 51, 237–247 (2002).

    Article  PubMed  Google Scholar 

  51. Hirase, H., Nikolenko, V. & Yuste, R. Multiphoton stimulation of neurons and spines. Cold Spring Harb. Protoc. 2012, 472–475 (2012).

    Article  PubMed  Google Scholar 

  52. Vaziri, A. & Emiliani, V. Reshaping the optical dimension in optogenetics. Curr. Opin. Neurobiol. 22, 128–137 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by postdoctoral fellowships from the US National Institutes of Health (NIH) and the Simons Foundation (N.R.W.), an NIH predoctoral fellowship (C.A.R.) and grants from the NIH and the Simons Foundation (M.S.). We sincerely thank the ScanImage team at Janelia Farm, particularly V. Iyer, for providing an open platform on which others can build on and learn from. We thank K. Wang for assistance with the cell detection algorithm. We thank M. Goard for help with mirror feedback computation and S. El-Boustani for help with deconvolution. We thank V. Nikolenko for technical advice and Prairie Technologies, especially J. Rafter, E. Heins, P. Gustafson, M. Nazir and C. McCallum for working closely with us during the development of all of these techniques and providing a stable commercial platform with numerous points of entry for customization. Finally, we thank B. Land as a model in scientific communication, whose public sharing of documentation helped in our early days to learn key principles of computer control that could then be extended here.

Author information

Authors and Affiliations

Authors

Contributions

N.R.W. and J.S. contributed equally to the work. N.R.W. built the systems, wrote the software, performed experiments and analyses, and wrote the manuscript. J.S. conceived the ideas and chain of algorithms that would avail this system, performed analyses, helped develop the software and helped write the manuscript. C.A.R. improved the system and contributed critical in vivo experiments to validate it; S.X.Y. developed and calibrated the all-optical methodology; R.E.C. helped program critical algorithms for cell detection and image motion correction; Y.D. helped initiate and develop the all-optical methodology and M.S. encouraged these developments, steered their application, helped write the manuscript, and supported the refinement of a robust and general protocol applicable to other laboratories.

Corresponding author

Correspondence to Mriganka Sur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Platform for high-speed, targeted neuronal activation during concurrent two-photon imaging, electrophysiology and sensory stimulation (PDF 718 kb)

Supplementary Figure 2

Further calibration of targeted cell stimulation for optical activation in vivo (PDF 6102 kb)

Supplementary Figure 3

Specificity of activation of neurons in the z-plane (PDF 2556 kb)

Supplementary Data 1

Mirror positions on some microscopes will lag command signals by a significant, variable amount that is repeatable and predictable (PDF 414 kb)

Supplementary Data 2

Landing on the cells with the help of mirror feedback (PDF 424 kb)

Supplementary Data 3

By knowing the actual position of the mirrors at the point when fluorescence is detected, it is possible to attribute the intensity of the signal back to the cell bodies that emitted them (PDF 602 kb)

Supplementary Data 4

With careful calibration and proper attribution of fluorescence to spatial locations, delivering sensory stimuli across repeated trials in vivo will result in calcium traces collected from a given cell with a consistent selectivity for those sensory stimuli (PDF 2128 kb)

Supplementary Data 5

Analysis of measured fluorescence signals and signal-to-noise ratios. (PDF 650 kb)

Supplementary Data 6

Proper calibration of the system will also allow for clean calcium transients that can be deconvolved to inferred spike trains automatically using the software (PDF 1182 kb)

Supplementary Note 1

Overview of the Software (PDF 429 kb)

Supplementary Note 2

Controlling a Prairie Microscope with ScanImage Software (PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, N., Schummers, J., Runyan, C. et al. Two-way communication with neural networks in vivo using focused light. Nat Protoc 8, 1184–1203 (2013). https://doi.org/10.1038/nprot.2013.063

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.063

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing