Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond

Abstract

We describe here a streamlined procedure for targeting vector construction, which often is a limiting factor for gene targeting (knockout) technology. This procedure combines various highly efficient recombination-based cloning methods in bacteria, consisting of three steps. First step is the use of Red-pathway-mediated recombination (recombineering) to capture a genomic fragment into a Gateway-compatible vector. Second, the vector is modified by recombineering to include a positive selection gene neo, from a variety of modular reagents. Finally, through a simple in vitro Gateway recombination, the modified genomic fragment is switched into a vector that contains negative selection cassettes, as well as unique sites for linearization. To demonstrate the usefulness of this protocol, we report targeted disruptions of members of the cadherin gene family, focusing on those that have not been previously studied at the molecular genetic level. This protocol needs 2 weeks to construct a targeting vector, and several vectors can be easily handled simultaneously using common laboratory setup.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart showing step by step how to design and construct a targeting vector: considerations before and after targeting vector cloning.
Figure 2: Two basic targeting vector designs and construction of a simple loss-of-function targeting vector.
Figure 3: Gateway-compatible vectors.
Figure 4: Schematic for the construction of conditional targeting vectors.
Figure 5: Three examples of the knockout mice generated: Fat2EGFP, Fat3nlacZ and Fat4EGFP knockout mice.
Figure 6: Expression patterns of Fat2 and Fat3 protocadherin genes revealed by knockin reporter alleles.
Figure 7: Pcdha type A and B expression patterns in the adult mouse brain revealed by staining of enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP) reporters.
Figure 8: Alkaline phosphatase (AP) as a reporter to probe gene expression patterns.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Thomas, K.R. & Capecchi, M.R. Site-directed, mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A. & Kucherlapati, R.S. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Capecchi, M.R. Targeted gene replacement. Sci. Am. 270, 52–59 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. International Mouse Knockout Consortium, Collins, F.S., Rossant, J. & Wurst, W. A mouse for all reasons. Cell 128, 9–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Austin, C.P. et al. The knockout mouse project. Nat. Genet. 36, 921–924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Auwerx, J. et al. The European dimension for the mouse genome mutagenesis program. Nat. Genet. 36, 925–927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akiyama, K., Watanabe, H., Tsukada, S. & Sasai, H. A novel method for constructing gene-targeting vectors. Nucleic Acids Res. 28, E77 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P. & Kushner, S.R. New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol. 171, 4617–4622 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859–865 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Bradshaw, M.S., Bollekens, J.A. & Ruddle, F.H. A new vector for recombination-based cloning of large DNA fragments from yeast artificial chromosomes. Nucleic Acids Res. 23, 4850–4856 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oliner, J.D., Kinzler, K.W. & Vogelstein, B. In vivo cloning of PCR products in E. coli. Nucleic Acids Res. 21, 5192–5197 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, A.F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y., Muyrers, J.P., Testa, G. & Stewart, A.F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, J. et al. An improved recombineering approach by adding RecA to lambda Red recombination. Mol. Biotechnol. 32, 43–53 (2006).

    Article  PubMed  Google Scholar 

  21. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, E.C. et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Angrand, P.O., Daigle, N., van der Hoeven, F., Scholer, H.R. & Stewart, A.F. Simplified generation of targeting constructs using ET recombination. Nucleic Acids Res. 27, e16 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Copeland, N.G., Jenkins, N.A. & Court, D.L. Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, P., Li, M.Z. & Elledge, S.J. Towards genetic genome projects: genomic library screening and gene-targeting vector construction in a single step. Nat. Genet. 30, 31–39 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. Valenzuela, D.M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Testa, G. et al. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat. Biotechnol. 21, 443–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, Y. & Seed, B. Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat. Biotechnol. 21, 447–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Cotta-de-Almeida, V., Schonhoff, S., Shibata, T., Leiter, A. & Snapper, S.B. A new method for rapidly generating gene-targeting vectors by engineering BACs through homologous recombination in bacteria. Genome Res. 13, 2190–2194 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wallace, H.A. et al. Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 128, 197–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Chan, W. et al. A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res. 35, e64 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Accili, D. A note of caution on the Knockout Mouse Project. Nat. Genet. 36, 1132 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Adams, D.J. et al. Mutagenic insertion and chromosome engineering resource (MICER). Nat. Genet. 36, 867–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Skarnes, W.C. et al. A public gene trap resource for mouse functional genomics. Nat. Genet. 36, 543–544 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hansen, J. et al. A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc. Natl. Acad. Sci. USA 100, 9918–9922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1994).

    Google Scholar 

  37. Joyner, A.L. (ed.) Gene Targeting: A Practical Approach (Oxford University Press, New York, 1999).

    Google Scholar 

  38. Capecchi, M.R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Koller, B.H. & Smithies, O. Altering genes in animals by gene targeting. Annu. Rev. Immunol. 10, 705–730 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Datta, S., Costantino, N. & Court, D.L. A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Court, D.L. et al. Mini-lambda: a tractable system for chromosome and BAC engineering. Gene 315, 63–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Court, D.L., Sawitzke, J.A. & Thomason, L.C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hartley, J.L., Temple, G.F. & Brasch, M.A. DNA cloning using in vitro site-specific recombination. Genome Res. 10, 1788–1795 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaufo, G.O., Wu, S. & Capecchi, M.R. Contribution of Hox genes to the diversity of the hindbrain sensory system. Development 131, 1259–1266 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, S., Ying, G., Wu, Q. & Capecchi, M.R. Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet. 39, 922–930 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, Y., Wang, G., Scott, S.A. & Capecchi, M.R. Hoxc10 and Hoxd10 regulate mouse columnar, divisional and motor pool identity of lumbar motoneurons. Development 135, 171–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Wu, Q. & Maniatis, T. Large exons encoding multiple ectodomains are a characteristic feature of protocadherin genes. Proc. Natl. Acad. Sci. USA 97, 3124–3129 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Price, S.R., De Marco Garcia, N.V., Ranscht, B. & Jessell, T.M. Regulation of motor neuron pool sorting by differential expression of type II cadherins. Cell 109, 205–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Takeichi, M. The cadherin superfamily in neuronal connections and interactions. Nat. Rev. Neurosci. 8, 11–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Capecchi, M.R. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 70–76 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Capecchi, M.R. Generating mice with targeted mutations. Nat. Med. 7, 1086–1090 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Soriano, P. Gene targeting in ES cells. Annu. Rev. Neurosci. 18, 1–18 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Tvrdik, P. & Capecchi, M.R. Reversal of Hox1 gene subfunctionalization in the mouse. Dev. Cell 11, 239–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Branda, C.S. & Dymecki, S.M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Glaser, S., Anastassiadis, K. & Stewart, A.F. Current issues in mouse genome engineering. Nat. Genet. 37, 1187–1193 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Yu, Y. & Bradley, A. Engineering chromosomal rearrangements in mice. Nat. Rev. Genet. 2, 780–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Rajewsky, K. et al. Conditional gene targeting. J. Clin. Invest. 98, 600–603 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Gu, H., Zou, Y.R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Dymecki, S.M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6191–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85, 5166–5170 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoess, R.H., Ziese, M. & Sternberg, N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. USA 79, 3398–3402 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McLeod, M., Craft, S. & Broach, J.R. Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol. Cell. Biol. 6, 3357–3367 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sternberg, N. & Hamilton, D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486 (1981).

    Article  CAS  PubMed  Google Scholar 

  67. Sternberg, N., Hamilton, D., Austin, S., Yarmolinsky, M. & Hoess, R. Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb. Symp. Quant. Biol. 45, 297–309 (1981).

    Article  CAS  PubMed  Google Scholar 

  68. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Moon, A.M. & Capecchi, M.R. Fgf8 is required for outgrowth and patterning of the limbs. Nat. Genet. 26, 455–459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Wu, S., Wu, Y. & Capecchi, M.R. Motoneurons and oligodendrocytes are sequentially generated from neural stem cells but do not appear to share common lineage-restricted progenitors in vivo. Development 133, 581–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Harfe, B.D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Hayashi, S. & McMahon, A.P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Indra, A.K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Greer, J.M., Puetz, J., Thomas, K.R. & Capecchi, M.R. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403, 661–665 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Lamartina, S. et al. Stringent control of gene expression in vivo by using novel doxycycline-dependent trans-activators. Hum. Gene Ther. 13, 199–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haldar, M., Hancock, J.D., Coffin, C.M., Lessnick, S.L. & Capecchi, M.R. A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 11, 375–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Adams, D.J. et al. A genome-wide, end-sequenced 129Sv BAC library resource for targeting vector construction. Genomics 86, 753–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Deng, C. & Capecchi, M.R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hasty, P., Rivera-Perez, J., Chang, C. & Bradley, A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol. Cell. Biol. 11, 4509–4517 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang, S.H., Silva, F.J., Tsark, W.M. & Mann, J.R. A Cre/loxP-deleter transgenic line in mouse strain 129S1/SvImJ. Genesis 32, 199–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Bunting, M., Bernstein, K.E., Greer, J.M., Capecchi, M.R. & Thomas, K.R. Targeting genes for self-excision in the germ line. Genes Dev. 13, 1524–1528 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thomas, K.R., Folger, K.R. & Capecchi, M.R. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  87. Zimmer, A. & Gruss, P. Production of chimaeric mice containing embryonic stem (ES) cells carrying a homoeobox Hox 1.1 allele mutated by homologous recombination. Nature 338, 150–153 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Zwaka, T.P. & Thomson, J.A. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21, 319–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Vasquez, K.M., Marburger, K., Intody, Z. & Wilson, J.H. Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. USA 98, 8403–8410 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Folger, K.R., Wong, E.A., Wahl, G. & Capecchi, M.R. Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol. 2, 1372–1387 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Doetschman, T. et al. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. te Riele, H., Maandag, E.R. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. George, S.H. et al. Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 4455–4460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gerlai, R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19, 177–181 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Wolfer, D.P., Crusio, W.E. & Lipp, H.P. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci. 25, 336–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Seong, E., Saunders, T.L., Stewart, C.L. & Burmeister, M. To knockout in 129 or in C57BL/6: that is the question. Trends Genet. 20, 59–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Schoonjans, L. et al. Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells 21, 90–97 (2003).

    Article  PubMed  Google Scholar 

  99. Auerbach, W. et al. Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic stem cell lines. Biotechniques 29, 1024–1028, 1030, 1032 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Schuster-Gossler, K. et al. Use of coisogenic host blastocysts for efficient establishment of germline chimeras with C57BL/6J ES cell lines. Biotechniques 31, 1022–1024 1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Zheng, B., Sage, M., Sheppeard, E.A., Jurecic, V. & Bradley, A. Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications. Mol. Cell. Biol. 20, 648–655 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van Deursen, J., Lovell-Badge, R., Oerlemans, F., Schepens, J. & Wieringa, B. Modulation of gene activity by consecutive gene targeting of one creatine kinase M allele in mouse embryonic stem cells. Nucleic Acids Res. 19, 2637–2643 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yanagawa, Y. et al. Enrichment and efficient screening of ES cells containing a targeted mutation: the use of DT-A gene with the polyadenylation signal as a negative selection maker. Transgenic Res. 8, 215–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Yagi, T. et al. Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc. Natl. Acad. Sci. USA 87, 9918–9922 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nagy, A. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990).

    CAS  PubMed  Google Scholar 

  106. Wood, S.A., Allen, N.D., Rossant, J., Auerbach, A. & Nagy, A. Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365, 87–89 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Inoue, H., Nojima, H. & Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Nichols, J., Evans, E.P. & Smith, A.G. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110, 1341–1348 (1990).

    CAS  PubMed  Google Scholar 

  109. Chomczynski, P. One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal. Biochem. 201, 134–139 (1992).

    Article  CAS  PubMed  Google Scholar 

  110. Truett, G.E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52 54 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Wu, Q. et al. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res. 11, 389–404 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu, Q. Comparative genomics and diversifying selection of the clustered vertebrate protocadherin genes. Genetics 169, 2179–2188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sugino, H. et al. Genomic organization of the family of CNR cadherin genes in mice and humans. Genomics 63, 75–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Nakayama, M., Nakajima, D., Yoshimura, R., Endo, Y. & Ohara, O. MEGF1/fat2 proteins containing extraordinarily large extracellular domains are localized to thin parallel fibers of cerebellar granule cells. Mol. Cell. Neurosci. 20, 563–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Nagae, S., Tanoue, T. & Takeichi, M. Temporal and spatial expression profiles of the Fat3 protein, a giant cadherin molecule, during mouse development. Dev. Dyn. 236, 534–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Rock, R., Schrauth, S. & Gessler, M. Expression of mouse dchs1, fjx1, and fat-j suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev. Dyn. 234, 747–755 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. A. Francis Stewart, Neal G. Copeland and Barry L. Wanner for providing their phage recombination systems, Dr. Jan-Fang Cheng (Lawrence Berkeley National Laboratory) for providing BAC clones for the clustered Pcdh locus, Drs. Changjiang Zou and Can Li (the Wu laboratory) for help with DNA blot experiments, Haiyan Peng (the Wu laboratory) for help on targeting vector construction and members of the Capecchi laboratory for comments on the article. We are grateful for the excellent technical support from ES cell culture and mouse surgery and husbandry staff in M.R.C. lab, in particular Sheila Barnett, Lois Byers, Carol Lenz, Arunth Lingam, Karl Lustig, Julie Tomlin and Joan Shuhua. G.Y. and Q.W. are supported by an American Cancer Society grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario R Capecchi.

Supplementary information

Supplementary Table 1

Oligonucleotides used in this study (PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Ying, G., Wu, Q. et al. A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. Nat Protoc 3, 1056–1076 (2008). https://doi.org/10.1038/nprot.2008.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.70

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing