Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats

Abstract

One popular way of measuring visual attentional processes in the rat is using 5-choice serial reaction time task (5-CSRTT). This paradigm requires subjects to detect brief flashes of light presented in a pseudorandom order in one of five spatial locations over a large number of trials. For this task, the animals are trained for 30–40 daily sessions during which they gradually learn to respond in the appropriate aperture within a certain amount of time. If they fail to respond, respond in the wrong hole or at an inappropriate time, a short period of darkness (time-out) is presented as punishment and no reward is delivered. The 5-CSRTT provides the possibility to test the effects of various neural, pharmacological and behavioral manipulations on discrete and somewhat independent measures of behavioral control, including accuracy of discrimination, impulsivity, perseverative responses and response latencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible trial sequences of the 5-choice serial reaction time task.
Figure 2: Schematic diagram of the 5-choice serial reaction time task chamber showing the spatial arrangement of the five response apertures in relation to the food magazine.
Figure 3: Principal components of the 5-choice serial reaction time task apparatus (commercial supplier: Med Associates, St. Albans, VT).

Similar content being viewed by others

References

  1. Robbins, T.W. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl.) 163, 362–380 (2002).

    Article  CAS  Google Scholar 

  2. Carli, M., Robbins, T.W., Evenden, J.L. & Everitt, B.J. Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav. Brain Res. 9, 361–380 (1983).

    Article  CAS  Google Scholar 

  3. Wilkinson, R.T. Interaction of noise with knowledge of results and sleep deprivation. J. Exp. Psychol. 66, 332–337 (1963).

    Article  CAS  Google Scholar 

  4. Beck, L.H., Bransome, E.D. Jr., Mirsky, A.F., Rosvold, H.E. & Sarason, I. A continuous performance test of brain damage. J. Consult. Psychol. 20, 343–350 (1956).

    Article  CAS  Google Scholar 

  5. Hahn, B., Shoaib, M. & Stolerman, I.P. Nicotine-induced enhancement of attention in the five-choice serial reaction time task: the influence of task demands. Psychopharmacology (Berl.) 162, 129–137 (2002).

    Article  CAS  Google Scholar 

  6. Dalley, J.W. et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315, 1267–1270 (2007).

    Article  CAS  Google Scholar 

  7. Navarra, R. et al. Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 34–41 (2008).

    Article  CAS  Google Scholar 

  8. Blondeau, C. & Dellu-Hagedorn, F. Dimensional analysis of ADHD subtypes in rats. Biol. Psychiatry 61, 1340–1350 (2007).

    Article  Google Scholar 

  9. Puumala, T. et al. Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol. Learn. Mem. 66, 198–211 (1996).

    Article  CAS  Google Scholar 

  10. Bizarro, L., Patel, S., Murtagh, C. & Stolerman, I.P. Differential effects of psychomotor stimulants on attentional performance in rats: nicotine, amphetamine, caffeine and methylphenidate. Behav. Pharmacol. 15, 195–206 (2004).

    CAS  PubMed  Google Scholar 

  11. Robinson, E.S. et al. Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33, 1028–1037 (2008).

    Article  CAS  Google Scholar 

  12. Day, M. et al. Differential effects of ciproxifan and nicotine on impulsivity and attention measures in the 5-choice serial reaction time test. Biochem. Pharmacol. 73, 1123–1134 (2007).

    Article  CAS  Google Scholar 

  13. Jones, D.N., Barnes, J.C., Kirkby, D.L. & Higgins, G.A. Age-associated impairments in a test of attention: evidence for involvement of cholinergic systems. J. Neurosci. 15, 7282–7292 (1995).

    Article  CAS  Google Scholar 

  14. Muir, J.L., Fischer, W. & Bjorklund, A. Decline in visual attention and spatial memory in aged rats. Neurobiol. Aging 20, 605–615 (1999).

    Article  CAS  Google Scholar 

  15. Dalley, J.W. et al. Cognitive sequelae of intravenous amphetamine self-administration in rats: evidence for selective effects on attentional performance. Neuropsychopharmacology 30, 525–537 (2005).

    Article  CAS  Google Scholar 

  16. Dalley, J.W. et al. Attentional and motivational deficits in rats withdrawn from intravenous self-administration of cocaine or heroin. Psychopharmacology (Berl.) 182, 579–587 (2005).

    Article  CAS  Google Scholar 

  17. Dalley, J.W. et al. Enduring deficits in sustained visual attention during withdrawal of intravenous methylenedioxymethamphetamine self-administration in rats: results from a comparative study with d-amphetamine and methamphetamine. Neuropsychopharmacology 32, 1195–1206 (2007).

    Article  CAS  Google Scholar 

  18. Harrison, A.A., Everitt, B.J. & Robbins, T.W. Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology (Berl.) 133, 329–342 (1997).

    Article  CAS  Google Scholar 

  19. Passetti, F., Chudasama, Y. & Robbins, T.W. The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. Cereb. Cortex 12, 1254–1268 (2002).

    Article  Google Scholar 

  20. Chudasama, Y. et al. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav. Brain Res. 146, 105–119 (2003).

    Article  CAS  Google Scholar 

  21. Winstanley, C.A., Theobald, D.E., Dalley, J.W., Cardinal, R.N. & Robbins, T.W. Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb. Cortex 16, 106–114 (2006).

    Article  Google Scholar 

  22. Dalley, J.W. et al. Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J. Neurosci. 21, 4908–4914 (2001).

    Article  CAS  Google Scholar 

  23. Passetti, F., Dalley, J.W., O'Connell, M.T., Everitt, B.J. & Robbins, T.W. Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. Eur. J. Neurosci. 12, 3051–3058 (2000).

    Article  CAS  Google Scholar 

  24. Dalley, J.W., Theobald, D.E., Pereira, E.A., Li, P.M. & Robbins, T.W. Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl.) 164, 329–340 (2002).

    Article  CAS  Google Scholar 

  25. Barbelivien, A., Ruotsalainen, S. & Sirvio, J. Metabolic alterations in the prefrontal and cingulate cortices are related to behavioral deficits in a rodent model of attention-deficit hyperactivity disorder. Cereb. Cortex 11, 1056–1063 (2001).

    Article  CAS  Google Scholar 

  26. Carli, M., Evenden, J.L. & Robbins, T.W. Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature 313, 679–682 (1985).

    Article  CAS  Google Scholar 

  27. Muir, J.L., Dunnett, S.B., Robbins, T.W. & Everitt, B.J. Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task. Exp. Brain Res. 89, 611–622 (1992).

    Article  CAS  Google Scholar 

  28. Chudasama, Y. & Robbins, T.W. Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl.) 174, 86–98 (2004).

    Article  CAS  Google Scholar 

  29. Amitai, N., Semenova, S. & Markou, A. Cognitive-disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats. Psychopharmacology (Berl.) 193, 521–537 (2007).

    Article  CAS  Google Scholar 

  30. Le Pen, G., Grottick, A.J., Higgins, G.A. & Moreau, J.L. Phencyclidine exacerbates attentional deficits in a neurodevelopmental rat model of schizophrenia. Neuropsychopharmacology 28, 1799–1809 (2003).

    Article  CAS  Google Scholar 

  31. Baviera, M., Invernizzi, R.W. & Carli, M. Haloperidol and clozapine have dissociable effects in a model of attentional performance deficits induced by blockade of NMDA receptors in the mPFC. Psychopharmacology (Berl.) 196, 269–280 (2007).

    Article  Google Scholar 

  32. Grottick, A.J. & Higgins, G.A. Assessing a vigilance decrement in aged rats: effects of pre-feeding, task manipulation, and psychostimulants. Psychopharmacology (Berl.) 164, 33–41 (2002).

    Article  CAS  Google Scholar 

  33. Winstanley, C.A., Eagle, D.M. & Robbins, T.W. Behavioural models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin. Psychol. Rev. 26, 379–395 (2006).

    Article  Google Scholar 

  34. Chudasama, Y. & Robbins, T.W. Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol. Psychol. 73, 19–38 (2006).

    Article  CAS  Google Scholar 

  35. Sahakian, B.J. et al. Further analysis of the cognitive effects of tetrahydroaminoacridine (THA) in Alzheimer's disease: assessment of attentional and mnemonic function using CANTAB. Psychopharmacology (Berl.) 110, 395–401 (1993).

    Article  CAS  Google Scholar 

  36. Paine, T.A., Tomasiewicz, H.C., Zhang, K. & Carlezon, W.A. Jr. Sensitivity of the five-choice serial reaction time task to the effects of various psychotropic drugs in Sprague-Dawley rats. Biol. Psychiatry 62, 687–693 (2007).

    Article  CAS  Google Scholar 

  37. Mirza, N.R. & Stolerman, I.P. Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology (Berl.) 138, 266–274 (1998).

    Article  CAS  Google Scholar 

  38. Robbins, T.W., Muir, J.L., Killcross, A.S. & Pretsell, D. Methods for assessing attention and stimulus control in the rat. In Behavioural Neuroscience: A Practical Approach Vol. I (ed. Sahgal, A.) 13–40 (Oxford University Press, New York, 1993).

    Google Scholar 

  39. Parasuraman, R. & Mouloua, M. Interaction of signal discriminability and task type in vigilance decrement. Percept. Psychophys. 41, 17–22 (1987).

    Article  CAS  Google Scholar 

  40. Grottick, A.J., Haman, M., Wyler, R. & Higgins, G.A. Reversal of a vigilance decrement in the aged rat by subtype-selective nicotinic ligands. Neuropsychopharmacology 28, 880–887 (2003).

    Article  CAS  Google Scholar 

  41. Robbins, T.W. & Everitt, B.J. Arousal systems and attention. In The Cognitive Neurosciences (ed. Gazzaniga, M.S.) 703–720 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  42. Chudasama, Y., Baunez, C. & Robbins, T.W. Functional disconnection of the medial prefrontal cortex and subthalamic nucleus in attentional performance: evidence for corticosubthalamic interaction. J. Neurosci. 23, 5477–5485 (2003).

    Article  CAS  Google Scholar 

  43. Passetti, F., Dalley, J.W. & Robbins, T.W. Double dissociation of serotonergic and dopaminergic mechanisms on attentional performance using a rodent five-choice reaction time task. Psychopharmacology (Berl.) 165, 136–145 (2003).

    Article  CAS  Google Scholar 

  44. Bushnell, P.J. Behavioral approaches to the assessment of attention in animals. Psychopharmacology (Berl.) 138, 231–259 (1998).

    Article  CAS  Google Scholar 

  45. Biederman, J. Attention-deficit/hyperactivity disorder: a selective overview. Biol. Psychiatry 57, 1215–1220 (2005).

    Article  Google Scholar 

  46. Laurent, A. et al. Attentional deficits in patients with schizophrenia and in their non-psychotic first-degree relatives. Psychiatry Res. 89, 147–159 (1999).

    Article  CAS  Google Scholar 

  47. Brown, R.G., Scott, L.C., Bench, C.J. & Dolan, R.J. Cognitive function in depression: its relationship to the presence and severity of intellectual decline. Psychol. Med. 24, 829–847 (1994).

    Article  CAS  Google Scholar 

  48. Parasuraman, R., Warm, J.S. & See, J.E. Brain systems and vigilance. In The Attentive Brain (ed. Parasuraman, R.) 221–256 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  49. Dalley, J.W. et al. Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb. Cortex 14, 922–932 (2004).

    Article  Google Scholar 

  50. Evenden, J.L. Varieties of impulsivity. Psychopharmacology (Berl.) 146, 348–361 (1999).

    Article  CAS  Google Scholar 

  51. Christakou, A., Robbins, T.W. & Everitt, B.J. Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J. Neurosci. 24, 773–780 (2004).

    Article  CAS  Google Scholar 

  52. Rosner, A.L. & Mittleman, G. Visuospatial attention in the rat and posterior parietal cortex lesions. Behav. Brain Res. 79, 69–77 (1996).

    Article  CAS  Google Scholar 

  53. Ward, N.M. & Brown, V.J. Covert orienting of attention in the rat and the role of striatal dopamine. J. Neurosci. 16, 3082–3088 (1996).

    Article  CAS  Google Scholar 

  54. Chudasama, Y. & Robbins, T.W. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 29, 1628–1636 (2004).

    Article  CAS  Google Scholar 

  55. Humby, T., Wilkinson, L.S. & Dawson, G.R. Assaying aspects of attention and impulse control in mice using the 5-choice serial reaction time task. In Current Protocols in Neuroscience (eds. Gerfen, C., Holmes, A., Rogawski, M., Sibley, D., Skolnick, P. & Wray, S.) Unit 8.5H, 8.5H.1–8.5H.15, supplement 31 (John Wiley & Sons, Hoboken, New Jersey, 2005).

    Google Scholar 

  56. Weed, M.R. et al. Performance norms for a rhesus monkey neuropsychological testing battery: acquisition and long-term performance. Brain Res. Cogn. Brain Res. 8, 185–201 (1999).

    Article  CAS  Google Scholar 

  57. Spinelli, S. et al. Performance of the marmoset monkey on computerized tasks of attention and working memory. Brain Res. Cogn. Brain Res. 19, 123–137 (2004).

    Article  Google Scholar 

  58. Diergaarde, L. et al. Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol. Psychiatry 63, 301–308 (2008).

    Article  CAS  Google Scholar 

  59. Blondel, A., Sanger, D.J. & Moser, P.C. Characterisation of the effects of nicotine in the five-choice serial reaction time task in rats: antagonist studies. Psychopharmacology (Berl.) 149, 293–305 (2000).

    Article  CAS  Google Scholar 

  60. Lambourne, S.L. et al. Impairments in impulse control in mice transgenic for the human FTDP-17 tauV337M mutation are exacerbated by age. Hum. Mol. Genet. 16, 1708–1719 (2007).

    Article  CAS  Google Scholar 

  61. Davies, W., Humby, T., Isles, A.R., Burgoyne, P.S. & Wilkinson, L.S. X-monosomy effects on visuospatial attention in mice: a candidate gene and implications for Turner syndrome and attention deficit hyperactivity disorder. Biol. Psychiatry 61, 1351–1360 (2007).

    Article  CAS  Google Scholar 

  62. de Senerpont Domis, L.M., Theobald, D.E., Verster, J.C., Dalley, J.W. & Robbins, T.W. Modelling impulsivity in adolescent rats. In Abstract Supplement to Journal of Psychopharmachology (ed. Dursun, S.) Vol. 21 A47 (Summer Meeting of the British Association for Psychopharmachology, Harrogate, UK, 2007).

    Google Scholar 

  63. Barnes, P., Staal, V., Muir, J. & Good, M.A. 17-Beta estradiol administration attenuates deficits in sustained and divided attention in young ovariectomized rats and aged acyclic female rats. Behav. Neurosci. 120, 1225–1234 (2006).

    Article  CAS  Google Scholar 

  64. Mirza, N.R. & Bright, J.L. Nicotine-induced enhancements in the five-choice serial reaction time task in rats are strain-dependent. Psychopharmacology (Berl.) 154, 8–12 (2001).

    Article  CAS  Google Scholar 

  65. De Bruin, N.M., Kiliaan, A.J., De Wilde, M.C. & Broersen, L.M. Combined uridine and choline administration improves cognitive deficits in spontaneously hypertensive rats. Neurobiol. Learn. Mem. 80, 63–79 (2003).

    Article  CAS  Google Scholar 

  66. Cardinal, R.N. & Aitken, M.R.F. Whisker, version 2.2, computer software http://www.whiskercontrol.com (2001).

  67. Granon, S. et al. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J. Neurosci. 20, 1208–1215 (2000).

    Article  CAS  Google Scholar 

  68. Winstanley, C.A. et al. Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psychopharmacology (Berl.) 167, 304–314 (2003).

    Article  CAS  Google Scholar 

  69. Robbins, T.W. et al. Comparative effects of ibotenic acid- and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes. Behav. Brain Res. 35, 221–240 (1989).

    Article  CAS  Google Scholar 

  70. Muir, J.L., Everitt, B.J. & Robbins, T.W. AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. J. Neurosci. 14, 2313–2326 (1994).

    Article  CAS  Google Scholar 

  71. Cole, B.J. & Robbins, T.W. Forebrain norepinephrine: role in controlled information processing in the rat. Neuropsychopharmacology 7, 129–142 (1992).

    CAS  PubMed  Google Scholar 

  72. Dalley, J.W., Cardinal, R.N. & Robbins, T.W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771–784.

Download references

Acknowledgements

This research was supported by a Wellcome Trust programme grant (076274/z/04/z) and completed within the Cambridge University Behavioural and Clinical Neuroscience Institute, supported by a joint award from the Medical Research Council (MRC) and Wellcome Trust. A.B. was supported by an MRC studentship. The authors thank Dr Y. Pelloux and Mr D.E. Theobald for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor W Robbins.

Ethics declarations

Competing interests

A.B. and J.W.D. declare that they have no competing financial interests. T.W.R. declares that over the past 3 years he has received honorariums from Solvay Pharmaceuticals (Weesp, The Netherlands), Microsoft, Merck, Sharp and Dohme, Lundbeck, and as Editor of Psychopharmacology. T.W.R. also acts as consultant for Glaxo Smith Kline, Eli Lilly Inc. and Allon Therapeutics, and has shares and share options in CeNeS, Cambridge Cognition and Allon Therapeutics. T.W.R. holds research grants with Pfizer and Glaxo Smith Kline.

Supplementary information

Supplementary Video 1

Example of a trained rat doing part of the task with standard baseline parameters (MP4 11035 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bari, A., Dalley, J. & Robbins, T. The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat Protoc 3, 759–767 (2008). https://doi.org/10.1038/nprot.2008.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.41

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing