Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

'Calling Cards' method for high-throughput identification of targets of yeast DNA-binding proteins

Abstract

We present a protocol for a novel method for identifying the targets of DNA-binding proteins in the genome of the yeast Saccharomyces cerevisiae. This is accomplished by engineering a DNA-binding protein so that it leaves behind in the genome a permanent mark—a 'calling card'—that provides a record of that protein's visit to that region of the genome. The calling card is the yeast Ty5 retrotransposon, whose integrase interacts with the Sir4 protein. If Sir4 is fused to a DNA-binding protein, it recruits the Ty5 integrase, which directs insertion of a Ty5 calling card into the genome. The calling card along with the flanking genomic DNA is harvested by inverse PCR and its genomic location is determined by hybridization of the product to a DNA microarray. This method provides a straightforward alternative to the 'ChIP-chip' method for determining the targets of DNA-binding proteins. This protocol takes 2 weeks to complete.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The five stages of the 'calling cards' protocol.
Figure 2

Similar content being viewed by others

References

  1. Voytas, D.F. & Boeke, J.D. Ty1 and Ty5 of Saccharomyces cerevisiae . In Mobile DNA II (eds. Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M.) 631–662 (ASM Press, Washington, DC, 2002).

    Chapter  Google Scholar 

  2. Xie, W. et al. Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol. Cell. Biol. 21, 6606–6614 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu, Y., Dai, J., Fuerst, P.G. & Voytas, D.F. Controlling integration specificity of a yeast retrotransposon. Proc. Natl. Acad. Sci. USA 100, 5891–5895 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Ma, H., Kunes, S., Schatz, P.J. & Botstein, D. Plasmid construction by homologous recombination in yeast. Gene 58, 201–216 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae . Yeast 10, 1793–1808 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  7. Horak, C.E. & Snyder, M. ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol. 350, 469–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, H., Johnston, M. & Mitra, R.D. Calling cards for DNA-binding proteins. Genome Res. 17, 1202–1209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao, X., Rowley, D.J., Gai, X. & Voytas, D.F. Ty5 gag mutations increase retrotransposition and suggest a role for hydrogen bonding in the function of the nucleocapsid zinc finger. J. Virol. 76, 3240–3247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  Google Scholar 

  12. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae . Science 298, 799–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeitlinger, J. et al. Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes Dev. 21, 385–390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmid, M., Durussel, T. & Laemmli, U.K. ChIC and ChEC; genomic mapping of chromatin proteins. Mol. Cell 16, 147–157 (2004).

    CAS  PubMed  Google Scholar 

  17. Wilson, T.E., Fahrner, T.J., Johnston, M. & Milbrandt, J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296–1300 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Deplancke, B., Dupuy, D., Vidal, M. & Walhout, A.J. A gateway-compatible yeast one-hybrid system. Genome Res. 14, 2093–2101 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deplancke, B. et al. A gene-centered C. elegans protein-DNA interaction network. Cell 125, 1193–1205 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Vermeirssen, V. et al. Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. Genome Res. 17, 1061–1071 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18, 424–428 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. van Steensel, B., Delrow, J. & Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat. Genet. 27, 304–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  Google Scholar 

  24. Gietz, R.D. & Woods, R.A. Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol. Biol. 313, 107–120 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dan Voytas (Iowa State University) for generously providing reagents and advice. This work was supported by the US National Institutes of Health grants R21RR023960 and 5P50HG003170-03 and funds provided by the James S. McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robi D Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Heinz, M., Crosby, S. et al. 'Calling Cards' method for high-throughput identification of targets of yeast DNA-binding proteins. Nat Protoc 3, 1569–1577 (2008). https://doi.org/10.1038/nprot.2008.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.148

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing