Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-channel recording of ligand-gated ion channels

Abstract

Electrophysiological recording of single-channel currents is the most direct method available for obtaining detailed and precise information about the kinetic behavior of ion channels. A wide variety of cell types can be used for single-channel recording, but to obtain the highest resolution of the briefest channel opening and closing events, low-noise recordings, coupled with a minimal filtering frequency, are required. Here, we present a protocol designed to help those with some electrophysiological expertise who wish to explore the properties of native and recombinant single ligand-gated ion channels. We have focused on the practical aspects of recording single GABA channels from cell-attached and outside-out patches and also introduced some of the preliminary considerations that are necessary for the analysis of single-channel data, including an introduction to single-channel analysis software.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of single-channel bath chamber.
Figure 2: Clusters, bursts and individual channel openings.
Figure 3: Channel stacking and low versus subconductance levels.
Figure 4: Different idealization methods can lead to different results.
Figure 5: Amplitude histograms fitted with Gaussian functions.
Figure 6: Dwell-time histograms fitted with exponentials.

Similar content being viewed by others

References

  1. Ehrenstein, G., Lecar, H. & Nossal, R. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J. Gen. Physiol. 55, 119–133 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hladky, S.B. & Haydon, D.A. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225, 451–453 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. Katz, B. & Miledi, R. The statistical nature of the acetycholine potential and its molecular components. J. Physiol. 224, 665–699 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    Article  CAS  Google Scholar 

  5. Neher, E., Sakmann, B. & Steinbach, J.H. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 375, 219–228 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Patlak, J.B., Gration, K.A. & Usherwood, P.N. Single glutamate-activated channels in locust muscle. Nature 278, 643–645 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Sigworth, F.J. & Neher, E. Single Na+ channel currents observed in cultured rat muscle cells. Nature 287, 447–449 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Verheugen, J.A., Fricker, D. & Miles, R. Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. J. Neurosci. 19, 2546–2555 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Sigworth, F.J. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. 307, 97–129 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hocherman, S.D. & Bezanilla, F. A patch-clamp study of delayed rectifier currents in skeletal muscle of control and mdx mice. J. Physiol. 493, 113–128 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Traynelis, S.F., Silver, R.A. & Cull-Candy, S.G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11, 279–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. De Koninck, Y. & Mody, I. Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABAA receptor channels. J. Neurophysiol. 71, 1318–1335 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Benke, T.A. et al. Mathematical modelling of non-stationary fluctuation analysis for studying channel properties of synaptic AMPA receptors. J. Physiol. 537, 407–420 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hartveit, E. & Veruki, M.L. Studying properties of neurotransmitter receptors by non-stationary noise analysis of spontaneous postsynaptic currents and agonist-evoked responses in outside-out patches. Nat. Protoc. 2, 434–448 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Thomas, P. & Smart, T.G. HEK293 cell line: a vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods 51, 187–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Thomas, P. & Smart, T.G. Current Protocols in Pharmacology (eds. Enna, S.J. et al.), 11.4.1–11.4.34 (John Wiley & Sons, New Jersey, 2002).

    Google Scholar 

  18. Groot-Kormelink, P.J., Beato, M., Finotti, C., Harvey, R.J. & Sivilotti, L.G. Achieving optimal expression for single channel recording: a plasmid ratio approach to the expression of alpha 1 glycine receptors in HEK293 cells. J. Neurosci. Methods 113, 207–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Mortensen, M. et al. Activation of single heteromeric GABA(A) receptor ion channels by full and partial agonists. J. Physiol. 557, 389–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Colquhoun, D. & Sigworth, F.J. Single-Channel Recording (eds. Sakmann, B. & Neher, E.) 483–587 (Plenum Press, New York, 1995).

    Book  Google Scholar 

  21. Sakmann, B. & Neher, E. Single-Channel Recording (eds. Sakmann, B. & Neher, E.) (Plenum Press, New York, 1995).

    Book  Google Scholar 

  22. Dempster, J. Computer Analysis of Electrophysiological Signals (Academic Press, London, 1993).

    Google Scholar 

  23. Sigworth, F.J. & Sine, S.M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Colquhoun, D. & Sakmann, B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. 369, 501–557 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hatton, C.J., Shelley, C., Brydson, M., Beeson, D. & Colquhoun, D. Properties of the human muscle nicotinic receptor, and of the slow-channel myasthenic syndrome mutant εL221F, inferred from maximum likelihood fits. J. Physiol. 547, 729–760 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burzomato, V., Beato, M., Groot-Kormelink, P.J., Colquhoun, D. & Sivilotti, L.G. Single-channel behavior of heteromeric α1β glycine receptors: an attempt to detect a conformational change before the channel opens. J. Neurosci. 24, 10924–10940 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Popescu, G. & Auerbach, A. Modal gating of NMDA receptors and the shape of their synaptic response. Nat. Neurosci. 6, 476–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Lema, G.M. & Auerbach, A. Modes and models of GABAA receptor gating. J. Physiol. 572, 183–200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Celentano, J.J. & Wong, R.K. Multiphasic desensitization of the GABAA receptor in outside-out patches. Biophys. J. 66, 1039–1050 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. MacDonald, R.L., Rogers, C.J. & Twyman, R.E. Kinetic properties of the GABAA receptor main conductance state of mouse spinal cord neurones in culture. J. Physiol. (Lond.) 410, 479–499 (1989).

    Article  CAS  Google Scholar 

  31. Jones, M.V. & Westbrook, G.L. Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15, 181–191 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Haas, K.F. & MacDonald, R.L. GABAA receptor subunit γ2 and δ subtypes confer unique kinetic properties on recombinant GABAA receptor currents in mouse fibroblasts. J. Physiol. 514, 27–45 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steinbach, J.H. & Akk, G. Modulation of GABAA receptor channel gating by pentobarbital. J. Physiol. 537, 715–733 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Marco Beato for comments on the manuscript and Guy Moss for discussion. This work was supported by MRC and the Alfred Benzon's Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor G Smart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, M., Smart, T. Single-channel recording of ligand-gated ion channels. Nat Protoc 2, 2826–2841 (2007). https://doi.org/10.1038/nprot.2007.403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.403

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing