Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings

Abstract

We present a protocol for determining the relative orientation and dynamics of A-form helices in 13C/15N isotopically enriched RNA samples using NMR residual dipolar couplings (RDCs). Non-terminal Watson–Crick base pairs in helical stems are experimentally identified using NOE and trans-hydrogen bond connectivity and modeled using the idealized A-form helix geometry. RDCs measured in the partially aligned RNA are used to compute order tensors describing average alignment of each helix relative to the applied magnetic field. The order tensors are translated into Euler angles defining the average relative orientation of helices and order parameters describing the amplitude and asymmetry of interhelix motions. The protocol does not require complete resonance assignments and therefore can be implemented rapidly to RNAs much larger than those for which complete high-resolution NMR structure determination is feasible. The protocol is particularly valuable for exploring adaptive changes in RNA conformation that occur in response to biologically relevant signals. Following resonance assignments, the procedure is expected to take no more than 2 weeks of acquisition and data analysis time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Determining the relative orientation and dynamics of A-form helices using an order tensor analysis of RDCs46,99.
Figure 3: Typical RDCs measured in base and sugar moieties of RNA using the pulse sequences listed in Table 1.
Figure 4: Example illustrating application of protocol in the determination of the relative orientation and dynamics of two helices in the free state of HIV-1 TAR RNA.
Figure 5: The relative orientation (interhelix bend, θh, and twist angles, ξ) and dynamics (ϑint) of RNA helices obtained from order tensor analysis of RDCs under different contexts.

Similar content being viewed by others

References

  1. Williamson, J.R. Molecular biology—small subunit, big science. Nature 407, 306–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Leulliot, N. & Varani, G. Current topics in RNA–protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Al-Hashimi, H.M. Dynamics-based amplification of RNA function and its characterization by using NMR spectroscopy. ChemBioChem 6, 1506–1519 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Micura, R. & Hobartner, C. On secondary structure rearrangements and equilibria of small RNAs. ChemBioChem 4, 984–990 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Williamson, J.R. Assembly of the 30S ribosomal subunit. Q. Rev. Biophys. 38, 397–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Schroeder, R., Barta, A. & Semrad, K. Strategies for RNA folding and assembly. Nat. Rev. Mol. Cell Biol. 5, 908–919 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Mandal, M. & Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5, 451–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Grundy, F.J. & Henkin, T.M. Regulation of gene expression by effectors that bind to RNA. Curr. Opin. Microbiol. 7, 126–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Hermann, T. Rational ligand design for RNA: the role of static structure and conformational flexibility in target recognition. Biochimie 84, 869–875 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Tor, Y. Targeting RNA with small molecules. ChemBioChem 4, 998–1007 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Vicens, Q. & Westhof, E. RNA as a drug target: the case of aminoglycosides. ChemBioChem 4, 1018–1023 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. D'Souza, V., Dey, A., Habib, D. & Summers, M.F. NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J. Mol. Biol. 337, 427–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Bax, A. & Grishaev, A. Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr. Opin. Struct. Biol. 15, 563–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. MacDonald, D. & Lu, P. Residual dipolar couplings in nucleic acid structure determination. Curr. Opin. Struct. Biol. 12, 337–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Mollova, E.T., Hansen, M.R. & Pardi, A. Global structure of RNA determined with residual dipolar couplings. J. Am. Chem. Soc. 122, 11561–11562 (2000).

    Article  CAS  Google Scholar 

  16. Tjandra, N. & Bax, A. Measurement of dipolar contributions to (1)J(CH) splittings from magnetic-field dependence of J modulation in two-dimensional NMR spectra. J. Magn. Reson. 124, 512–515 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins—information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Williamson, J.R. Induced fit in RNA–protein recognition. Nat. Struct. Biol. 7, 834–837 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lilley, D.M.J. The Varkud satellite ribozyme. RNA 10, 151–158 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dickerson, R.E., Goodsell, D.S., Kopka, M.L. & Pjura, P.E. The effect of crystal packing on oligonucleotide double helix structure. J. Biomol. Struct. Dyn. 5, 557–579 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Getz, M.M., Andrews, A.J., Fierke, C.A. & Al-Hashimi, H.M. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation. RNA 13(2), 251–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Sun, X., Zhang, Q. & Al-Hashimi, H.M. Resolving fast and slow internal motions in the bulge containing stem–loop 1 of HIV-1 that are modulated by Mg2+ binding: role in the kissing-duplex structural transition. Nucleic Acids Res. 35(5), 1698–1713 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Musselman, C. et al. Impact of static and dynamic A-form heterogeneity on the determination of RNA global structural dynamics using NMR residual dipolar couplings. J. Biomol. NMR 36, 235–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Al-Hashimi, H.M. et al. Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings. J. Mol. Biol. 315, 95–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Zacharias, M. & Hagerman, P.J. Bulge-induced bends in RNA—quantification by transient electric birefringence. J. Mol. Biol. 247, 486–500 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Zacharias, M. & Hagerman, P.J. The influence of symmetric internal loops on the flexibility of RNA. J. Mol. Biol. 257, 276–289 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Varani, G., Aboulela, F. & Allain, F.H.T. NMR investigation of RNA structure. Prog. Nucl. Magn. Reson. Spectrosc. 29, 51–127 (1996).

    Article  CAS  Google Scholar 

  28. Wijmenga, S.S. & van Buuren, B.N.M. The use of NMR methods for conformational studies of nucleic acids. Prog. Nucl. Magn. Reson. Spectrosc. 32, 287–387 (1998).

    Article  CAS  Google Scholar 

  29. Furtig, B., Richter, C., Wohnert, J. & Schwalbe, H. NMR spectroscopy of RNA. ChemBioChem 4, 936–962 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Al-Hashimi, H.M. & Patel, D.J. Residual dipolar couplings: synergy between NMR and structural genomics. J. Biomol. NMR 22, 1–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Al-Hashimi, H.M., Gorin, A., Majumdar, A., Gosser, Y. & Patel, D.J. Towards structural genomics of RNA: rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings. J. Mol. Biol. 318, 637–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Olson, W.K. et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313, 229–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Neidle, S. Oxford Handbook of Nucleic Acid Structure (Oxford University Press, New York, 1999).

    Google Scholar 

  34. McCallum, S.A. & Pardi, A. Refined solution structure of the iron-responsive element RNA using residual dipolar couplings. J. Mol. Biol. 326, 1037–1050 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Bondensgaard, K., Mollova, E.T. & Pardi, A. The global conformation of the hammerhead ribozyme determined using residual dipolar couplings. Biochemistry 41, 11532–11542 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Sibille, N., Pardi, A., Simorre, J.P. & Blackledge, M. Refinement of local and long-range structural order in theophylline-binding RNA using C-13–H-1 residual dipolar couplings and restrained molecular dynamics. J. Am. Chem. Soc. 123, 12135–12146 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Leeper, T.C., Athanassiou, Z., Dias, R.L.A., Robinson, J.A. & Varani, G. TAR RNA recognition by a cyclic peptidomimetic of Tat protein. Biochemistry 44, 12362–12372 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Richards, R.J. et al. Structural study of elements of Tetrahymena telomerase RNA stem–loop IV domain important for function. RNA 12, 1475–1485 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bothner-By, A.A. in Encyclopedia of Nuclear Magnetic Resonance (eds. Grant, D.M. & Harris, R.K.) 2932–2938 (Wiley, Chichester, 1995).

    Google Scholar 

  40. Prestegard, J.H., Al-Hashimi, H.M. & Tolman, J.R. NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q. Rev. Biophys. 33, 371–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Tolman, J.R. & Ruan, K. NMR residual dipolar couplings as probes of biomolecular dynamics. Chem. Rev. 106, 1720–1736 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dingley, A.J. & Grzesiek, S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide (2)J(NN) couplings. J. Am. Chem. Soc. 120, 8293–8297 (1998).

    Article  CAS  Google Scholar 

  44. Pervushin, K. et al. NMR scaler couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation optimized spectroscopy. Proc. Natl. Acad. Sci. USA 95, 14147–14151 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saupe, A. Recent results in field of liquid crystals. Angew. Chem. Int. Edn. 7, 97–112 (1968).

    Article  CAS  Google Scholar 

  46. Losonczi, J.A., Andrec, M., Fischer, M.W.F. & Prestegard, J.H. Order matrix analysis of residual dipolar couplings using singular value decomposition. J. Magn. Reson. 138, 334–342 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Tolman, J.R., Al-Hashimi, H.M., Kay, L.E. & Prestegard, J.H. Structural and dynamic analysis of residual dipolar coupling data for proteins. J. Am. Chem. Soc. 123, 1416–1424 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Zweckstetter, M. & Bax, A. Evaluation of uncertainty in alignment tensors obtained from dipolar couplings. J. Biomol. NMR 23, 127–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in C-13-labeled proteins. J. Am. Chem. Soc. 120, 6394–6400 (1998).

    Article  CAS  Google Scholar 

  50. Ying, J.F., Grishaev, A., Bryce, D.L. & Bax, A. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements. J. Am. Chem. Soc. 128, 11443–11454 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Hansen, A.L. & Al-Hashimi, H.M. Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints. J. Magn. Reson. 179, 299–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Grishaev, A., Ying, J.F. & Bax, A. Pseudo-CSA restraints for NMR refinement of nucleic acid structure. J. Am. Chem. Soc. 128, 10010–10011 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Briggman, K.B. & Tolman, J.R. De novo determination of bond orientations and order parameters from residual dipolar couplings with high accuracy. J. Am. Chem. Soc. 125, 10164–10165 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Q., Throolin, R., Pitt, S.W., Serganov, A. & Al-Hashimi, H.M. Probing motions between equivalent RNA domains using magnetic field induced residual dipolar couplings: accounting for correlations between motions and alignment. J. Am. Chem. Soc. 125, 10530–10531 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, Y. et al. Structure of stem–loop IV of Tetrahymena telomerase RNA. EMBO J. 25, 3156–3166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Q., Sun, X.Y., Watt, E.D. & Al-Hashimi, H.M. Resolving the motional modes that code for RNA adaptation. Science 311, 653–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Hansen, M.R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Kontaxis, G., Clore, G.M. & Bax, A. Evaluation of cross-correlation effects and measurement of one-bond couplings in proteins with short transverse relaxation times. J. Magn. Reson. 143, 184–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Redfield, A.G. The theory of relaxation processes. Adv. Mag. Reson. 1, 1–32 (1965).

    Article  Google Scholar 

  60. de Alba, E. & Tjandra, N. On the accurate measurement of amide one-bond N-15–H-1 couplings in proteins: effects of cross-correlated relaxation, selective pulses and dynamic frequency shifts. J. Magn. Reson. 183, 160–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Boisbouvier, J., Bryce, D.L., O'Neil-Cabello, E., Nikonowicz, E.P. & Bax, A. Resolution-optimized NMR measurement of D-1(CH), D-1(CH) and D-2(CH) residual dipolar couplings in nucleic acid bases. J. Biomol. NMR 30, 287–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Prestegard, J.H. & Kishore, A.I. Partial alignment of biomolecules: an aid to NMR characterization. Curr. Opin. Chem. Biol. 5, 584–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Clore, G.M., Starich, M.R. & Gronenborn, A.M. Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J. Am. Chem. Soc. 120, 10571–10572 (1998).

    Article  CAS  Google Scholar 

  64. Hansen, M.R., Hanson, P. & Pardi, A. Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions. Methods Enzymol. 317, 220–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Ottiger, M., Tjandra, N. & Bax, A. Magnetic field dependent amide N-15 chemical shifts in a protein-DNA complex resulting from magnetic ordering in solution. J. Am. Chem. Soc. 119, 9825–9830 (1997).

    Article  CAS  Google Scholar 

  66. Kung, H.C., Wang, K.Y., Goljer, I. & Bolton, P.H. Magnetic alignment of duplex and quadruplex DNAs. J. Mag. Reson. Series B 109, 323–325 (1995).

    Article  CAS  Google Scholar 

  67. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. & Bax, A. Use of dipolar H-1–N-15 and H-1–C-13 couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Al-Hashimi, H.M. et al. Field- and phage-induced dipolar couplings in a homodimeric DNA quadruplex, relative orientation of G center dot(C-A) triad and G-tetrad motifs and direct determination of C2 symmetry axis orientation. J. Am. Chem. Soc. 123, 633–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Zweckstetter, M. & Bax, A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791–3792 (2000).

    Article  CAS  Google Scholar 

  70. Ravishanker, G., Swaminathan, S., Beveridge, D.L., Lavery, R. & Sklenar, H. Conformational and helicoidal analysis of 30 Ps of molecular-dynamics on the D(Cgcgaattcgcg) double helix—curves, dials and windows. J. Biomol. Struct. Dyn. 6, 669–699 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Dickerson, R.E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–1926 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu, X.J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu, X.J., El Hassan, M.A. & Hunter, C.A. Structure and conformation of helical nucleic acids: analysis program (SCHNAaP). J. Mol. Biol. 273, 668–680 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Bansal, M., Bhattacharyya, D. & Ravi, B. NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures. Comput. Appl. Biosci. 11, 281–287 (1995).

    CAS  PubMed  Google Scholar 

  75. Valafar, H. & Prestegard, J.H. REDCAT: a residual dipolar coupling analysis tool. J. Magn. Reson. 167, 228–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Wei, Y.F. & Werner, M.H. iDC: a comprehensive toolkit for the analysis of residual dipolar couplings for macromolecular structure determination. J. Biomol. NMR 35, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Skrynnikov, N.R. et al. Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. J. Mol. Biol. 295, 1265–1273 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Al-Hashimi, H.M. et al. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. J. Magn. Reson. 143, 402–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Tang, R.S. & Draper, D.E. Bulge loops used to measure the helical twist of RNA in solution. Biochemistry 29, 5232–5237 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Bhattacharyya, A., Murchie, A.I.H. & Lilley, D.M.J. RNA bulges and the helical periodicity of double-stranded-RNA. Nature 343, 484–487 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Bhattacharyya, A. & Lilley, D.M.J. Single base mismatches in DNA—long-range and short-range structure probed by analysis of axis trajectory and local chemical-reactivity. J. Mol. Biol. 209, 583–597 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Riordan, F.A., Bhattacharyya, A., McAteer, S. & Lilley, D.M.J. Kinking of RNA helices by bulged bases, and the structure of the human-immunodeficiency-virus transactivator response element. J. Mol. Biol. 226, 305–310 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Tang, R.S. & Draper, D.E. On the use of phasing experiments to measure helical repeat and bulge loop-associated twist in RNA. Nucleic Acids Res. 22, 835–841 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang, R.S. & Draper, D.E. Bend and helical twist associated with a symmetrical internal loop from 5S ribosomal-RNA. Biochemistry 33, 10089–10093 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, H.D. et al. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc. Natl. Acad. Sci. USA 99, 4284–4289 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rueda, D. et al. Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core. Biochemistry 42, 9924–9936 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Al-Hashimi, H.M., Pitt, S.W., Majumdar, A., Xu, W.J. & Patel, D.J. Mg2+-induced variations in the conformation and dynamics of HIV-1 TAR RNA probed using NMR residual dipolar couplings. J. Mol. Biol. 329, 867–873 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Woodson, S.A. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9, 104–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Ippolito, J.A. & Steitz, T.A. A 1.3-angstrom resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation. Proc. Natl. Acad. Sci. USA 95, 9819–9824 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Du, Z., Lind, K.E. & James, T.L. Structure of TAR RNA complexed with a Tat-TAR interaction nanomolar inhibitor that was identified by computational screening. Chem. Biol. 9, 707–712 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Faber, C., Sticht, H., Schweimer, K. & Rosch, P. Structural rearrangements of HIV-1 Tat-responsive RNA upon binding of neomycin B. J. Biol. Chem. 275, 20660–20666 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Aboul-ela, F., Karn, J. & Varani, G. The structure of the human-immunodeficiency-virus type-1 Tar RNA reveals principles of RNA recognition by Tat protein. J. Mol. Biol. 253, 313–332 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Aboul-ela, F., Karn, J. & Varani, G. Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Res. 24, 3974–3981 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Puglisi, J.D., Tan, R.Y., Calnan, B.J., Frankel, A.D. & Williamson, J.R. Conformation of the Tar RNA-arginine complex by Nmr-spectroscopy. Science 257, 76–80 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Murchie, A.I. et al. Structure-based drug design targeting an inactive RNA conformation: exploiting the flexibility of HIV-1 TAR RNA. J. Mol. Biol. 336, 625–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Pitt, S.W., Majumdar, A., Serganov, A., Patel, D.J. & Al-Hashimi, H.M. Argininamide binding arrests global motions in HIV-1 TAR RNA: comparison with Mg2+-induced conformational stabilization. J. Mol. Biol. 338, 7–16 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pitt, S.W., Zhang, Q., Patel, D.J. & Al-Hashimi, H.M. Evidence that electrostatic interactions dictate the ligand-induced arrest of RNA global flexibility. Angew. Chem. Int. Edn. 44, 3412–3415 (2005).

    Article  CAS  Google Scholar 

  98. Casiano-Negroni, A., Sun, X. & Al-Hashimi, H.M. Probing Na(+)-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: New insights into the role of counterions and electrostatic interactions in adaptive recognition. Biochemistry (in the press).

  99. Saupe, A. & Englert, G. High-resolution nuclear magnetic resonance spectra of orientated molecules. Phys. Rev. Lett. 11, 462–464 (1963).

    Article  CAS  Google Scholar 

  100. Cornell, W.D. et al. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).

    Article  CAS  Google Scholar 

  101. Clowney, L. et al. Geometric parameters in nucleic acids: nitrogenous bases. J. Am. Chem. Soc. 118, 509–518 (1996).

    Article  CAS  Google Scholar 

  102. Getz, M.M., Sun, X., Casiano-Negroni, A., Zhang, Q. & Al-Hashimi, H.M. NMR studies of RNA dynamics and structural plasticity using NMR residual dipolar couplings. Biopolymers (in the press).

  103. Davis, B. et al. Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic “hot spots”. J. Mol. Biol. 336, 343–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Miclet, E., O'Neil-Cabello, E., Nikonowicz, E.P., Live, D. & Bax, A. H-1–H-1 dipolar couplings provide a unique probe of RNA backbone structure. J. Am. Chem. Soc. 125, 15740–15741 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Miclet, E., Boisbouvier, J. & Bax, A. Measurement of eight scalar and dipolar couplings for methine-methylene pairs in proteins and nucleic acids. J. Biomol. NMR 31, 201–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. O'Neil-Cabello, E., Bryce, D.L., Nikonowicz, E.P. & Bax, A. Measurement of five dipolar couplings from a single 3D NMR multiplet applied to the study of RNA dynamics. J. Am. Chem. Soc. 126, 66–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Ottiger, M., Delaglio, F. & Bax, A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131, 373–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Vallurupalli, P. & Moore, P.B. Measurement of H2′-C2′and H3′-C3′ dipolar couplings in RNA molecules. J. Biomol. NMR 24, 63–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Yan, J.L., Corpora, T., Pradhan, P. & Bushweller, J.H. MQ-HCN-based pulse sequences for the measurement of (13)C1′-(1)H1′, (13)C1′-N-15, (1)H1′-N-15, (13)C1′-(13)C2′, (1)H1′-(13)C2′, (13)C6/8–(1)H6/8, (13)C6/8–N-15, (1)H6/8–N-15, (13)C6–(13)C5, (1)H6–(13)C5 dipolar couplings in C-13, N-15-labeled DNA (and RNA). J. Biomol. NMR 22, 9–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Zidek, L., Wu, H.H., Feigon, J. & Sklenar, V. Measurement of small scalar and dipolar couplings in purine and pyrimidine bases. J. Biomol. NMR 21, 153–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Brutscher, B., Boisbouvier, J., Pardi, A., Marion, D. & Simorre, J.P. Improved sensitivity and resolution in H-1–C-13 NMR experiments of RNA. J. Am. Chem. Soc. 120, 11845–11851 (1998).

    Article  CAS  Google Scholar 

  112. Jaroniec, C.P., Boisbouvier, J., Tworowska, I., Nikonowicz, E.P. & Bax, A. Accurate measurement of 15N–13C residual dipolar couplings in nucleic acids. J Biomol NMR 31, 231–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Ottiger, M. & Bax, A. Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J. Biomol. NMR 12, 361–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Sass, J. et al. Purple membrane induced alignment of biological macromolecules in the magnetic field. J. Am. Chem. Soc. 121, 2047–2055 (1999).

    Article  CAS  Google Scholar 

  116. Koenig, B.W. et al. NMR measurement of dipolar couplings in proteins aligned by transient binding to purple membrane fragments. J. Am. Chem. Soc. 121, 1385–1386 (1999).

    Article  CAS  Google Scholar 

  117. Tycko, R., Blanco, F.J. & Ishii, Y. Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J. Am. Chem. Soc. 122, 9340–9341 (2000).

    Article  CAS  Google Scholar 

  118. Sass, H.J., Musco, G., Stahl, S.J., Wingfield, P.T. & Grzesiek, S. Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J. Biomol. NMR 18, 303–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Ruckert, M. & Otting, G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J. Am. Chem. Soc. 122, 7793–7797 (2000).

    Article  CAS  Google Scholar 

  120. Alvarez-Salgado, F., Desvaux, H. & Boulard, Y. NMR assessment of the global shape of a non-labelled DNA dodecamer containing a tandem of G-T mismatches. Magn. Reson. Chem. 44, 1081–1089 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Al-Hashimi laboratory for insightful comments and Dr. Alex Kurochkin for his expertise and for maintenance of the NMR instruments. H.M.A. acknowledges fruitful collaborations with the groups of Carol Fierke (The University of Michigan) and Ioan Andricioaei (The University of Michigan). We gratefully acknowledge the Michigan Economic Development Cooperation and the Michigan Technology Tri-Corridor for the support in the purchase 600 MHz spectrometer. This work was supported by funding from the NIH (RO1 AI066975-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashim M Al-Hashimi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailor, M., Musselman, C., Hansen, A. et al. Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nat Protoc 2, 1536–1546 (2007). https://doi.org/10.1038/nprot.2007.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.221

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing