Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Microfluidic culture platform for neuroscience research

Abstract

This protocol describes the fabrication and use of a microfluidic device to culture central nervous system (CNS) and peripheral nervous system neurons for neuroscience applications. This method uses replica-molded transparent polymer parts to create miniature multi-compartment cell culture platforms. The compartments are made of tiny channels with dimensions of tens to hundreds of micrometers that are large enough to culture a few thousand cells in well-controlled microenvironments. The compartments for axon and somata are separated by a physical partition that has a number of embedded micrometer-sized grooves. After 3–4 days in vitro (DIV), cells that are plated into the somal compartment have axons that extend across the barrier through the microgrooves. The culture platform is compatible with microscopy methods such as phase contrast, differential interference microscopy, fluorescence and confocal microscopy. Cells can be cultured for 2–3 weeks within the device, after which they can be fixed and stained for immunocytochemistry. Axonal and somal compartments can be maintained fluidically isolated from each other by using a small hydrostatic pressure difference; this feature can be used to localize soluble insults to one compartment for up to 20 h after each medium change. Fluidic isolation enables collection of pure axonal fraction and biochemical analysis by PCR. The microfluidic device provides a highly adaptable platform for neuroscience research and may find applications in modeling CNS injury and neurodegeneration. This protocol can be completed in 1–2 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of master mold fabrication.
Figure 2: Schematic of PDMS device fabrication by soft lithography.
Figure 3: Two modes of assembling devices.
Figure 4: Confocal micrograph of Tau (green) and MAP5 (red) immunostained neurons (a) and phase micrographs of 6 DIV neurons (b,c) cultured in the microfluidic device.
Figure 5: Schematic of axotomy procedure in the microfluidic device.
Figure 6
Figure 7: RNA blot of samples isolated from somal and axonal chambers.

Similar content being viewed by others

References

  1. Whitesides, G.M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Manz, A. et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—capillary electrophoresis on a chip. J. Chromatogr. 593, 253–258 (1992).

    Article  CAS  Google Scholar 

  3. Atencia, J. & Beebe, D. J. Controlled microfluidic interfaces. Nature 437, 648–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Xia, Y. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  CAS  Google Scholar 

  5. McDonald, J.C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. McDonald, J.C. & Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts Chem. Res. 35, 491–499 (2002).

    Article  CAS  Google Scholar 

  7. Jeon, N.L. et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20, 826–830 (2002).

    Article  CAS  Google Scholar 

  8. Lin, F. et al. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochem. Biophys. Res. Commun. 319, 576–581 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S.J., Saadi, W., Lin, F., Minh-Canh Nguyen, C. & Jeon, N.L. Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp. Cell Res. 300, 180–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Irimia, D. et al. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab. Chip 6, 191–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Taylor, A.M., Rhee, S.W. & Jeon, N.L. Microfluidic chambers for cell migration and neuroscience research. Methods Mol. Biol. 321, 167–177 (2006).

    CAS  PubMed  Google Scholar 

  12. Saadi, W., Wang, S.J., Lin, F. & Jeon, N.L. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed. Microdevices 8, 109–118 (2006).

    Article  PubMed  Google Scholar 

  13. Dittrich, P.S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Pihl, J., Karlsson, M. & Chiu, D.T. Microfluidic technologies in drug discovery. Drug Discov. Today 10, 1377–1383 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Thompson, D.M., King, K.R., Wieder, K.J., Toner, M., Yarmush, M.L. & Jayaraman, A. Dynamic gene expression profiling using a microfabricated living cell array. Anal. Chem. 76, 4098–4103 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Tourovskaia, A., Figueroa-Masot, X. & Folch, A. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab. Chip 5, 14–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Taylor, A.M. et al. Microfluidic multicompartment device for neuroscience research. Langmuir 19, 1551–1556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, A.M. et al. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods 2, 599–605 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El-Ali, J., Sorger, P.K. & Jensen, K.F. Cells on chips. Nature 442, 403–411 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Breslauer, D.N., Lee, P.J. & Lee, L.P. Microfluidics-based systems biology. Mol. BioSyst. 2, 97–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Andersson, H. & van den Berg, A. Microfluidic devices for cellomics. in Lab-on-Chips for Cellomics (eds. Andersson, H. & van den Berg, A.) 1–22 (Kluwer Academic, Dordrecht, The Netherlands, 2004).

    Chapter  Google Scholar 

  22. Campenot, R.B. Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. USA 74, 4516–4519 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ure, D.R. & Campenot, R.B. Leukemia inhibitory factor and nerve growth factor are retrogradely transported and processed by cultured rat sympathetic neurons. Dev. Biol. 162, 339–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. MacInnis, B.L. & Campenot, R.B. Retrograde support of neuronal survival without retrograde transport of nerve growth factor. Science 295, 1536–1539 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Campenot, R.B. & MacInnis, B.L. Retrogradetransport of neurotrophins: fact and function. J. Neurobiol. 58, 217–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Campenot, R.B., Lund, K. & Senger, D.L. Delivery of newly synthesized tubulin to rapidly growing distal axons of sympathetic neurons in compartmented cultures. J. Cell Biol. 135, 701–709 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Campenot, R.B. et al. Block of slow axonal transport and axonal growth by brefeldin A in compartmented cultures of rat sympathetic neurons. Neuropharmacology 44, 1107–1117 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Senger, D.L. & Campenot, R.B. Rapid retrograde tyrosine phosphorylation of trkA and other proteins in rat sympathetic neurons in compartmented cultures. J. Cell Biol. 138, 411–421 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vance, J.E., Campenot, R.B. & Vance, D.E. The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim. Biophys. Acta 1486, 84–96 (1999).

    Article  Google Scholar 

  30. Campenot, R.B. Regeneration of neurites on long-term cultures of sympathetic neurons deprived of nerve growth factor. Science 214, 579–581 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noo Li Jeon.

Ethics declarations

Competing interests

Three of the authors (AMT, SWR, and NLJ) have personal financial interests associated with patent applications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Vahidi, B., Taylor, A. et al. Microfluidic culture platform for neuroscience research. Nat Protoc 1, 2128–2136 (2006). https://doi.org/10.1038/nprot.2006.316

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.316

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing