Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Jasmonate signalling in Arabidopsis involves SGT1b–HSP70–HSP90 chaperone complexes

Abstract

Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b–HSP70–HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b–HSP90 client protein list and broadens the functional scope of SGT1b–HSP70–HSP90 chaperone complexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hsm1 mutant is allelic to the SGT1b gene and is defective in JA–COR responses.
Figure 2: SGT1b and SGT1a are involved in maintaining COI1 stability.
Figure 3: COI1 associates with SGT1b–HSP70–HSP90 complexes.
Figure 4: SGT1b is involved in responses to hormones that utilize F-box proteins as receptors but functions independently of ASK1.
Figure 5: HSP70 and HSP90 are required for JA–COR responses.

Similar content being viewed by others

References

  1. Chow, B. & McCourt, P. Plant hormone receptors: perception is everything. Genes Dev. 20, 1998–2008 (2006).

    Article  CAS  Google Scholar 

  2. Spartz, A. K. & Gray, W. M. Plant hormone receptors: new perceptions. Genes Dev. 22, 2139–2148 (2008).

    Article  CAS  Google Scholar 

  3. Bari, R. & Jones, J. D. Role of plant hormones in plant defence responses. Plant Molec. Biol. 69, 473–488 (2009).

    Article  CAS  Google Scholar 

  4. Millet, Y. A. et al. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22, 973–990 (2010).

    Article  CAS  Google Scholar 

  5. Acosta, I. F. & Farmer, E. E. Jasmonates. Arabidopsis Book 8, e0129 (2010).

    Article  Google Scholar 

  6. Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    Article  CAS  Google Scholar 

  7. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007).

    Article  CAS  Google Scholar 

  8. Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665 (2007).

    Article  CAS  Google Scholar 

  9. Kitagawa, K., Skowyra, D., Elledge, S. J., Harper, J. W. & Hieter, P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 4, 21–33 (1999).

    Article  CAS  Google Scholar 

  10. Hubert, D. A. et al. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22, 5679–5689 (2003).

    Article  CAS  Google Scholar 

  11. Kim, T. S. et al. HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proc. Natl Acad. Sci. USA 108, 16843–16848 (2011).

    Article  CAS  Google Scholar 

  12. Liu, Y., Burch-Smith, T., Schiff, M., Feng, S. & Dinesh-Kumar, S. P. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279, 2101–2108 (2004).

    Article  CAS  Google Scholar 

  13. Davies, A. E. & Kaplan, K. B. Hsp90-Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore-microtubule binding sites. J. Cell. Biol. 189, 261–274 (2010).

    Article  CAS  Google Scholar 

  14. Lingelbach, L. B. & Kaplan, K. B. The interaction between Sgt1p and Skp1p is regulated by HSP90 chaperones and is required for proper CBF3 assembly. Mol. Cell. Biol. 24, 8938–8950 (2004).

    Article  CAS  Google Scholar 

  15. Dubacq, C., Guerois, R., Courbeyrette, R., Kitagawa, K. & Mann, C. Sgt1p contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyr1p/Cdc35p in budding yeast. Eukaryot. Cell 1, 568–582 (2002).

    Article  CAS  Google Scholar 

  16. Taipale, M. et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150, 987–1001 (2012).

    Article  CAS  Google Scholar 

  17. Boter, M. et al. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19, 3791–3804 (2007).

    Article  CAS  Google Scholar 

  18. Zhang, M. et al. Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO J. 27, 2789–2798 (2008).

    Article  CAS  Google Scholar 

  19. Austin, M. J. et al. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295, 2077–2080 (2002).

    Article  CAS  Google Scholar 

  20. Azevedo, C. et al. Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J. 25, 2007–2016 (2006).

    Article  CAS  Google Scholar 

  21. Gomez-Gomez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).

    Article  CAS  Google Scholar 

  22. Cuperus, J. T. et al. Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc. Natl Acad. Sci. USA 107, 466–471 (2010).

    Article  CAS  Google Scholar 

  23. Zhang, X-C., Millet, Y. A., Ausubel, F. M. & Borowsky, M. Next-gen sequencing-based mapping and identification of ethyl methanesulfonate-induced mutations in Arabidopsis thaliana. Curr. Protoc. Mol. Biol. 108, 7.18.1–7.18.16 (2014).

  24. Noel, L. D. et al. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19, 4061–4076 (2007).

    Article  CAS  Google Scholar 

  25. Gray, W. M., Muskett, P. R., Chuang, H. W. & Parker, J. E. Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell 15, 1310–1319 (2003).

    Article  CAS  Google Scholar 

  26. Albrecht, C. et al. Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc. Natl Acad. Sci. USA 109, 303–308 (2012).

    Article  CAS  Google Scholar 

  27. El Oirdi, M. et al. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23, 2405–2421 (2011).

    Article  CAS  Google Scholar 

  28. Savatin, D. V., Ferrari, S., Sicilia, F. & De Lorenzo, G. Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis. Plant Physiol. 157, 1163–1174 (2011).

    Article  CAS  Google Scholar 

  29. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005).

    Article  CAS  Google Scholar 

  30. Fu, X. et al. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 16, 1406–1418 (2004).

    Article  CAS  Google Scholar 

  31. Sangster, T. A. et al. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS ONE 2, e648 (2007).

    Article  Google Scholar 

  32. Uppalapati, S. R. et al. SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis. New Phytol. 189, 83–93 (2011).

    Article  CAS  Google Scholar 

  33. Feys, B., Benedetti, C. E., Penfold, C. N. & Turner, J. G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759 (1994).

    Article  CAS  Google Scholar 

  34. Noir, S. et al. Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiol. 161, 1930–1951 (2013).

    Article  CAS  Google Scholar 

  35. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998).

    Article  CAS  Google Scholar 

  36. He, Y., Chung, E. H., Hubert, D. A., Tornero, P. & Dangl, J. L. Specific missense alleles of the Arabidopsis jasmonic acid co-receptor COI1 regulate innate immune receptor accumulation and function. PLoS Genet. 8, e1003018 (2012).

    Article  CAS  Google Scholar 

  37. Bieri, S. et al. RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16, 3480–3495 (2004).

    Article  CAS  Google Scholar 

  38. Song, Y. H. et al. Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering. Proc. Natl Acad. Sci. USA 111, 17672–17677 (2014).

    Article  CAS  Google Scholar 

  39. Lachowiec, J. et al. The protein chaperone HSP90 can facilitate the divergence of gene duplicates. Genetics 193, 1269–1277 (2013).

    Article  CAS  Google Scholar 

  40. Li, J. F., Bush, J., Xiong, Y., Li, L. & McCormack, M. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation. PLoS ONE 6, e27364 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Bartenstein, C. Mankiw and M. Cerulli for help in EMS mutant screening, C. Queitsch for providing the HSP90 RNAi-A1 and RNAi-C1 constructs, M. Borowsky for computational analyses of the Illumina sequencing reads and mapping of the hsm1 mutant, C. Haney and D. McEwan for discussion and critical reading, and J. Li, O. Liu, Y. Niu, L. Li and J. Sheen for plasmids, constructs and technical advice. This work was supported by NSF grants MCB-0519898 and IOS-0929226 and NIH grants GM48707 and P30 DK040561 awarded to F.M.A.

Author information

Authors and Affiliations

Authors

Contributions

X-C. Z., Y. M. and F. M. A. designed the study; X-C. Z., Y. M., Z. C. and J. B. performed experiments; X-C. Z. and F. M. A. wrote the manuscript.

Corresponding author

Correspondence to Frederick M. Ausubel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XC., Millet, Y., Cheng, Z. et al. Jasmonate signalling in Arabidopsis involves SGT1b–HSP70–HSP90 chaperone complexes. Nature Plants 1, 15049 (2015). https://doi.org/10.1038/nplants.2015.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing