Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Liposome adhesion generates traction stress

Abstract

Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dynamics of liposome spreading depends on substrate stiffness.
Figure 2: Liposome adhesion deforms soft substrates.
Figure 3: Substrate traction stress varies with liposome size.
Figure 4: Substrate contraction induces compression of the membrane and budding of the bilayer at the contact zone.
Figure 5: Minimization of energy drives substrate contraction.

Similar content being viewed by others

References

  1. Boucrot, E. & Kirchhausen, T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl Acad. Sci. USA 104, 7939–7944 (2007).

    Article  ADS  Google Scholar 

  2. Raucher, D. & Sheetz, M. P. Membrane expansion increases endocytosis rate during mitosis. J. Cell Biol. 144, 497–506 (1999).

    Article  Google Scholar 

  3. Houk, A. R. et al. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148, 175–188 (2012).

    Article  Google Scholar 

  4. Gauthier, N. C., Fardin, M. A., Roca-Cusachs, P. & Sheetz, M. P. Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc. Natl Acad. Sci. USA 108, 14467–14472 (2011).

    Article  ADS  Google Scholar 

  5. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskel. 60, 24–34 (2005).

    Article  Google Scholar 

  6. Schwarz, U. S. & Gardel, M. L. United we stand: Integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125, 3051–3060 (2012).

    Article  Google Scholar 

  7. Batchelder, E. L. et al. Membrane tension regulates motility by controlling lamellipodium organization. Proc. Natl Acad. Sci. USA 108, 11429–11434 (2011).

    Article  ADS  Google Scholar 

  8. Lipowsky, R. & Seifert, U. Adhesion of membranes—a theoretical perspective. Langmuir 7, 1867–1873 (1991).

    Article  Google Scholar 

  9. Lipowsky, R. & Seifert, U. Adhesion of vesicles and membranes. Mol. Cryst. Liq. Cryst. 202, 17–25 (1991).

    Article  Google Scholar 

  10. Seifert, U. & Lipowsky, R. Adhesion of vesicles. Phys. Rev. A 42, 4768–4771 (1990).

    Article  ADS  Google Scholar 

  11. Albersdorfer, A., Feder, T. & Sackmann, E. Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: A model membrane study. Biophys. J. 73, 245–257 (1997).

    Article  Google Scholar 

  12. Nardi, J., Bruinsma, R. & Sackmann, E. Adhesion-induced reorganization of charged fluid membranes. Phys. Rev. E 58, 6340–6354 (1998).

    Article  ADS  Google Scholar 

  13. Murrell, M. et al. Spreading dynamics of biomimetic actin cortices. Biophys. J. 100, 1400–1409 (2011).

    Article  ADS  Google Scholar 

  14. Bernard, A. L., Guedeau-Boudeville, M. A., Jullien, L. & di Meglio, J. M. Strong adhesion of giant vesicles on surfaces: Dynamics and permeability. Langmuir 16, 6809–6820 (2000).

    Article  Google Scholar 

  15. Brochard-Wyart, F. & de Gennes, P. G. Adhesion induced by mobile binders: Dynamics. Proc. Natl Acad. Sci. USA 99, 7854–7859 (2002).

    Article  ADS  Google Scholar 

  16. Cuvelier, D. & Nassoy, P. Hidden dynamics of vesicle adhesion induced by specific stickers. Phys. Rev. Lett. 93, 228101 (2004).

    Article  ADS  Google Scholar 

  17. Limozin, L. & Sengupta, K. Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions. Biophys. J. 93, 3300–3313 (2007).

    Article  ADS  Google Scholar 

  18. Olbrich, K., Rawicz, W., Needham, D. & Evans, E. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys. J. 79, 321–327 (2000).

    Article  Google Scholar 

  19. Sandre, O., Moreaux, L. & Brochard-Wyart, F. Dynamics of transient pores in stretched vesicles. Proc. Natl Acad. Sci. USA 96, 10591–10596 (1999).

    Article  ADS  Google Scholar 

  20. Evans, E., Heinrich, V., Ludwig, F. & Rawicz, W. Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85, 2342–2350 (2003).

    Article  Google Scholar 

  21. Sabass, B., Gardel, M. L., Waterman, C. M. & Schwarz, U. S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008).

    Article  Google Scholar 

  22. Hategan, A., Law, R., Kahn, S. & Discher, D. E. Adhesively-tensed cell membranes: Lysis kinetics and atomic force microscopy probing. Biophys. J. 85, 2746–2759 (2003).

    Article  Google Scholar 

  23. Style, R. W. & Dufresne, E. R. Static wetting on deformable substrates, from liquids to soft solids. Soft Matter 8, 7177–7184 (2012).

    Article  ADS  Google Scholar 

  24. Staykova, M., Holmes, D. P., Read, C. & Stone, H. A. Mechanics of surface area regulation in cells examined with confined lipid membranes. Proc. Natl Acad. Sci. USA 108, 9084–9088 (2011).

    Article  ADS  Google Scholar 

  25. Christian, D. A. et al. Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding. Nature Mater. 8, 843–849 (2009).

    Article  ADS  Google Scholar 

  26. Hategan, A., Sengupta, K., Kahn, S., Sackmann, E. & Discher, D.E. Topographical pattern dynamics in passive adhesion of cell membranes. Biophys. J. 87, 3547–3560 (2004).

    Article  ADS  Google Scholar 

  27. Gordon, V. D., Deserno, M., Andrew, C. M. J., Egelhaaf, S. U. & Poon, W. C. K. Adhesion promotes phase separation in mixed-lipid membranes. Europhys. Lett. 84, 48003 (2008).

    Article  ADS  Google Scholar 

  28. Rouhiparkouhi, T., Weikl, T. R., Discher, D. E. & Lipowsky, R. Adhesion-induced phase behavior of two-component membranes and vesicles. Int. J. Mol. Sci. 14, 2203–2229 (2013).

    Article  Google Scholar 

  29. Norman, L., Sengupta, K. & Aranda-Espinoza, H. Blebbing dynamics during endothelial cell spreading. Eur. J. Cell Biol. 90, 37–48 (2011).

    Article  Google Scholar 

  30. Norman, L. L., Brugues, J., Sengupta, K., Sens, P. & Aranda-Espinoza, H. Cell blebbing and membrane area homeostasis in spreading and retracting cells. Biophys. J. 99, 1726–1733 (2010).

    Article  ADS  Google Scholar 

  31. Myat, M. M., Anderson, S., Allen, L. A. & Aderem, A. MARCKS regulates membrane ruffling and cell spreading. Curr. Biol. 7, 611–614 (1997).

    Article  Google Scholar 

  32. Dai, J. W., Sheetz, M. P., Wan, X. D. & Morris, C. E. Membrane tension in swelling and shrinking molluscan neurons. J. Neurosci. 18, 6681–6692 (1998).

    Article  Google Scholar 

  33. Delanoe-Ayari, H., Rieu, J. P. & Sano, M. 4D traction force microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells. Phys. Rev. Lett. 105, 248103 (2010).

    Article  ADS  Google Scholar 

  34. Maskarinec, S. A., Franck, C., Tirrell, D. A. & Ravichandran, G. Quantifying cellular traction forces in three dimensions. Proc. Natl Acad. Sci. USA 106, 22108–22113 (2009).

    Article  ADS  Google Scholar 

  35. Wang, N., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Micropatterning tractional forces in living cells. Cell Motil. Cytoskeleton 52, 97–106 (2002).

    Article  Google Scholar 

  36. Yip, A. K. et al. Cellular response to substrate rigidity is governed by either stress or strain. Biophys. J. 104, 19–29 (2013).

    Article  ADS  Google Scholar 

  37. Oakes, P. W., Beckham, Y., Stricker, J. & Gardel, M. L. Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J. Cell Biol. 196, 363–374 (2012).

    Article  Google Scholar 

  38. Califano, J. P. & Reinhart-King, C. A. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3, 68–75 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from NSF Grant DMR-0844115 for postdoctoral fellowship support to M.P.M. as well as the ICAM Branches Cost Sharing Fund. M.G. acknowledges support from the Burroughs Wellcome CASI award, Packard Foundation, and University of Chicago MRSEC. M.P.M. and C.S. acknowledge support from the French Agence Nationale de la Recherche (ANR) Grant ANR 12BSV5001401, and the Fondation pour la Recherche Médicale Grant DEQ20120323737. We thank U. Schwarz (University of Heidelberg) for use of traction force algorithms.

Author information

Authors and Affiliations

Authors

Contributions

M.P.M. performed experiments. M.L.G. developed analytical tools. R.V., J-F.J., P.N. and C.S. contributed theory and calculations. M.P.M., R.V., J-F.J., P.N., C.S. and M.L.G. wrote the paper.

Corresponding author

Correspondence to Michael P. Murrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1792 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 2477 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 3411 kb)

Supplementary Movie

Supplementary Movie 3 (MOV 1484 kb)

Supplementary Movie

Supplementary Movie 4 (MOV 5058 kb)

Supplementary Movie

Supplementary Movie 5 (MOV 2119 kb)

Supplementary Movie

Supplementary Movie 6 (MOV 1087 kb)

Supplementary Movie

Supplementary Movie 7 (MOV 274 kb)

Supplementary Movie

Supplementary Movie 8 (MOV 1841 kb)

Supplementary Movie

Supplementary Movie 9 (MOV 2922 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murrell, M., Voituriez, R., Joanny, JF. et al. Liposome adhesion generates traction stress. Nature Phys 10, 163–169 (2014). https://doi.org/10.1038/nphys2855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing