Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Past achievements and future challenges in the development of three-dimensional photonic metamaterials

Abstract

Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallodielectric subwavelength building blocks. This deceptively simple yet powerful concept allows the realization of many new and unusual optical properties, such as magnetism at optical frequencies, negative refractive index, large positive refractive index, zero reflection through impedance matching, perfect absorption, giant circular dichroism and enhanced nonlinear optical properties. Possible applications of metamaterials include ultrahigh-resolution imaging systems, compact polarization optics and cloaking devices. This Review describes recent progress in the fabrication of three-dimensional metamaterial structures and discusses some of the remaining challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progress in metamaterial operating frequency over the past decade.
Figure b1: Connection between the negative phase velocity of light and the negative refraction of light for the simple case of an isotropic effective medium with complex-valued frequency-dependent refractive index n(ω).
Figure 2: 3D photonic-metamaterial structures.
Figure 3: 3D chiral metamaterials.

Similar content being viewed by others

References

  1. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  2. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  Google Scholar 

  3. Zheludev, N. I. The road ahead for metamaterials. Science 328, 582–583 (2010).

    Article  ADS  Google Scholar 

  4. Soukoulis, C. M. & Wegener, M. Optical metamaterials: More bulky and less lossy. Science 330, 1633–1634 (2010).

    Article  ADS  Google Scholar 

  5. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    Article  ADS  Google Scholar 

  6. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE T. Microw. Theory 47, 2075–2084 (1999).

    Article  Google Scholar 

  7. Zhang, S. et al. Mid-infrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett. 94, 037402 (2005).

    Article  ADS  Google Scholar 

  8. Dolling, G., Enkrich, C., Wegener, M., Zhou, J. F. & Soukoulis, C. M. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 30, 3198–3200 (2005).

    Article  ADS  Google Scholar 

  9. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

    Article  ADS  Google Scholar 

  10. Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

    Article  ADS  Google Scholar 

  11. Dolling, G., Wegener, M., Soukoulis, C. M. & Linden, S. Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 32, 53–55 (2007).

    Article  ADS  Google Scholar 

  12. Chettiar, U. K. et al. Dual-band negative index metamaterial: Double negative at 813 nm and single negative at 772 nm. Opt. Lett. 32, 1671–1673 (2007).

    Article  ADS  Google Scholar 

  13. Garcia-Meca, C., Ortuno, R., Rodriguez-Fortuno, F. J., Marti, J. & Martinez, A. Double-negative polarization-independent fishnet metamaterial in the visible spectrum. Opt. Lett. 34, 1603–1605 (2009).

    Article  ADS  Google Scholar 

  14. Xiao, S. M., Chettiar, U. K., Kildishev, A. V., Drachev, V. P. & Shalaev, V. M. Yellow-light negative-index metamaterials. Opt. Lett. 34, 3478–3480 (2009).

    Article  ADS  Google Scholar 

  15. Garcia-Meca, C. et al. Low-loss multilayered metamaterial exhibiting a negative index of visible of refraction at visible wavelengths. Phys. Rev. Lett. 106, 067402 (2011).

    Article  ADS  Google Scholar 

  16. Smith, D. R., Schultz, S., Markos, P. & Soukoulis, C. M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002).

    Article  ADS  Google Scholar 

  17. Kriegler, C. E., Rill, M. S., Linden, S. & Wegener, M. Bianisotropic photonic metamaterials. IEEE J. Sel. Top. Quant. 16, 367–375 (2010).

    Article  Google Scholar 

  18. Ku, Z. Y., Zhang, J. Y. & Brueck, S. R. J. Bi-anisotropy of multiple-layer fishnet negative-index metamaterials due to angled sidewalls. Opt. Express 17, 6782–6789 (2009).

    Article  ADS  Google Scholar 

  19. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    Article  ADS  Google Scholar 

  20. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  21. Wegener, M., Dolling, G. & Linden, S. Plasmonics: Backward waves moving forward. Nature Mater. 6, 475–476 (2007).

    Article  ADS  Google Scholar 

  22. Zhang, S. A. et al. Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Opt. Express 14, 6778–6787 (2006).

    Article  ADS  Google Scholar 

  23. Zhou, J. F., Koschny, T., Kafesaki, M. & Soukoulis, C. M. Negative refractive index response of weakly and strongly coupled optical metamaterials. Phys. Rev. B 80, 035109 (2009).

    Article  ADS  Google Scholar 

  24. Katsarakis, N. et al. Magnetic response of split-ring resonators in the far infrared frequency regime. Opt. Lett. 30, 1348–1350 (2005).

    Article  ADS  Google Scholar 

  25. Miyamaru, F. et al. Three-dimensional bulk metamaterials operating in the terahertz range. Appl. Phys. Lett. 96, 081105 (2010).

    Article  ADS  Google Scholar 

  26. Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater. 7, 31–37 (2008).

    Article  ADS  Google Scholar 

  27. Liu, N., Fu, L. W., Kaiser, S., Schweizer, H. & Giessen, H. Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials. Adv. Mater. 20, 3859–3865 (2008).

    Article  Google Scholar 

  28. Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  ADS  Google Scholar 

  29. Boltasseva, A. & Shalaev, V. M. Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials 2, 1–17 (2008).

    Article  ADS  Google Scholar 

  30. Decker, M. et al. Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett. 34, 2501–2503 (2009).

    Article  ADS  Google Scholar 

  31. Decker, M., Zhao, R., Soukoulis, C. M., Linden, S. & Wegener, M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 35, 1593–1595 (2010).

    Article  ADS  Google Scholar 

  32. Xiong, X. et al. Construction of a chiral metamaterial with a U-shaped resonator assembly. Phys. Rev. B 81, 075119 (2010).

    Article  ADS  Google Scholar 

  33. Zhou, J., Zhao, R., Soukoulis, C. M., Taylor, A. J. & O'Hara, J. Chiral THz metamaterial with tunable optical activity. Proc. Conf. on Lasers and Electro-Optics paper CTuF (2010).

  34. Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009).

    Article  ADS  Google Scholar 

  35. Zhou, J. F. et al. Negative refractive index due to chirality. Phys. Rev. B 79, 121104 (2009).

    Article  ADS  Google Scholar 

  36. Li, Z. F. et al. Chiral metamaterials with negative refractive index based on four 'U' split ring resonators. Appl. Phys. Lett. 97, 081101 (2010).

    Article  ADS  Google Scholar 

  37. Zhang, S. et al. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009).

    Article  ADS  Google Scholar 

  38. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  ADS  Google Scholar 

  39. Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices — micromachines can be created with higher resolution using two-photon absorption. Nature 412, 697–698 (2001).

    Article  ADS  Google Scholar 

  40. Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444–447 (2004).

    Article  ADS  Google Scholar 

  41. Li, J. F., Hossain, M. D. M., Jia, B. H., Buso, D. & Gu, M. Three-dimensional hybrid photonic crystals merged with localized plasmon resonances. Opt. Express 18, 4491–4498 (2010).

    Article  ADS  Google Scholar 

  42. Fischer, J., von Freymann, G. & Wegener, M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22, 3578–3582 (2010).

    Article  Google Scholar 

  43. Fang, A., Koschny, T. & Soukoulis, C. M. Optical anisotropic metamaterials: Negative refraction and focusing. Phys. Rev. B 79, 241104 (2009).

    Article  ADS  Google Scholar 

  44. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nature Mater. 6, 946–950 (2007).

    Article  ADS  Google Scholar 

  45. Verhagen, E., de Waele, R., Kuipers, L. & Polman, A. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides. Phys. Rev. Lett. 105, 223901 (2010).

    Article  ADS  Google Scholar 

  46. Belov, P. A. et al. Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range. Phys. Rev. B 77, 193108 (2008).

    Article  ADS  Google Scholar 

  47. Casse, B. D. F. et al. Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl. Phys. Lett. 96, 023114 (2010).

    Article  ADS  Google Scholar 

  48. Silveirinha, M. G., Belov, P. A. & Simovski, C. R. Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods. Opt. Lett. 33, 1726–1728 (2008).

    Article  ADS  Google Scholar 

  49. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930–930 (2008).

    Article  ADS  Google Scholar 

  50. Kawata, S., Ono, A. & Verma, P. Subwavelength colour imaging with a metallic nanolens. Nature Photon. 2, 438–442 (2008).

    Article  Google Scholar 

  51. Burckel, D. B. et al. Micrometer-scale cubic unit cell 3D metamaterial layers. Adv. Mater. 22, 5053–5057 (2010).

    Article  Google Scholar 

  52. Bohren, C. F. & Huffman, D. R. Absorption and scattering of light by small particles. (Wiley, 1983).

    Google Scholar 

  53. O'Brien, S. & Pendry, J. B. Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Mat. 14, 4035–4044 (2002).

    Article  ADS  Google Scholar 

  54. Peng, L. et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys. Rev. Lett. 98, 157403 (2007).

    Article  ADS  Google Scholar 

  55. Schuller, J. A., Zia, R., Taubner, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

    Article  ADS  Google Scholar 

  56. Vynck, K. et al. All-dielectric rod-type metamaterials at optical frequencies. Phys. Rev. Lett. 102, 133901 (2009).

    Article  ADS  Google Scholar 

  57. Holloway, C. L., Kuester, E. F., Baker-Jarvis, J. & Kabos, P. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE T. Antenn. Propag. 51, 2596–2603 (2003).

    Article  ADS  Google Scholar 

  58. Ahmadi, A. & Mosallaei, H. Physical configuration and performance modeling of all-dielectric metamaterials. Phys. Rev. B 77, 045104 (2008).

    Article  ADS  Google Scholar 

  59. Cai, X., Zhu, R. & Hu, G. Experimental study of metamaterials based on dielectric resonators and wire frame. Metamaterials 2, 220–226 (2008).

    Article  ADS  Google Scholar 

  60. Zhao, Q. et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008).

    Article  ADS  Google Scholar 

  61. Zhao, Q. et al. Tunable negative permeability in an isotropic dielectric composite. Appl. Phys. Lett. 92, 051106 (2006).

    Article  ADS  Google Scholar 

  62. Seo, B. J., Ueda, T., Itoh, T. & Fetterman, H. Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium. Appl. Phys. Lett. 88, 161122 (2006).

    Article  ADS  Google Scholar 

  63. Wheeler, M. S., Aitchison, J. S. & Mojahedi, M. Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies. Phys. Rev. B 73, 045105 (2006).

    Article  ADS  Google Scholar 

  64. Zhao, Q., Zhou, J., Zhang, F. & Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (December 2009).

    Article  Google Scholar 

  65. Fu, N. et al. Three-dimensional negative-refractive-index metamaterials based on all-dielectric coated spheres. Preprint at http://arxiv.org/abs/1004.4694 (2010).

  66. Engheta, N., Salandrino, A. & Alu, A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors and nanoresistors. Phys. Rev. Lett. 95, 095504 (2009).

    Article  ADS  Google Scholar 

  67. Yannopapas, V. Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Appl. Phys. A 87, 259–264 (2007).

    Article  ADS  Google Scholar 

  68. Vendik, I., Odit, M. & Kozlov, D. 3D metamaterial based on a regular array of resonant dielectric inclusions. Radioengineering 18, 111–116 (2009).

    Google Scholar 

  69. Huang, K. C., Povinelli, M. L. & Joannopoulos, J. D. Negative effective permeability in polaritonic photonic crystals. Appl. Phys. Lett. 85, 543–545 (2004).

    Article  ADS  Google Scholar 

  70. Yannopapas, V. Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres. Phys. Rev. B 75, 035112 (2007).

    Article  ADS  Google Scholar 

  71. Dolling, G., Wegener, M. & Linden, S. Realization of a three-functional-layer negative-index photonic metamaterial. Opt. Lett. 32, 551–553 (2007).

    Article  ADS  Google Scholar 

  72. Xiao, S. et al. Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010).

    Article  ADS  Google Scholar 

  73. Wuestner, S., Pusch, A., Tsakmakidis, K. L., Hamm, J. M. & Hess, O. Overcoming losses with gain in a negative refractive index metamaterial. Phys. Rev. Lett. 105, 127401 (2010).

    Article  ADS  Google Scholar 

  74. Fang, A., Koschny, Th. & Soukoulis, C. M. Self-consistent calculations of loss-compensated fishnet metamaterials. Phys. Rev. B 82, 121102 (2010).

    Article  ADS  Google Scholar 

  75. Plum, E., Fedotov, V. A., Kuo, P., Tsai, D. P. & Zheludev, N. I. Towards the lasing spaser: Controlling metamaterial optical response with semiconductor quantum dots. Opt. Express 17, 8548–8551 (2009).

    Article  ADS  Google Scholar 

  76. Meinzer, N. et al. Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain. Opt. Express 18, 24140–24151 (2010).

    Article  ADS  Google Scholar 

  77. Stockman, M. I. Criterion for negative refraction with low optical losses from a fundamental principle of causality. Phys. Rev. Lett. 98, 177404 (2007).

    Article  ADS  Google Scholar 

  78. Kinsler, P. & McCall, M. W. Causality-based criteria for a negative refractive index must be used with care. Phys. Rev. Lett. 101, 167401 (2008).

    Article  ADS  Google Scholar 

  79. Rockstuhl, C., Lederer, F., Etrich, C., Pertsch, T. & Scharf, T. Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum. Phys. Rev. Lett. 99, 017401 (2007).

    Article  ADS  Google Scholar 

  80. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  ADS  Google Scholar 

  81. Erb, R. M., Son, H. S., Samanta, B., Rotello, V. M. & Yellen, B. B. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999–1002 (2009).

    Article  ADS  Google Scholar 

  82. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  83. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2009).

    Article  ADS  Google Scholar 

  84. Liu, X., Starr, T., Starr, A. F. & Padilla, W. J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010).

    Article  ADS  Google Scholar 

  85. Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

    Article  ADS  Google Scholar 

  86. Avitzour, Y., Urzhumov, Y. A. & Shvets, G. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B 79, 045131 (2009).

    Article  ADS  Google Scholar 

  87. Diem, M., Koschny, Th. & Soukoulis, C. M. Wide-angle perfect absorber/thermal emitter in the THz regime. Phys. Rev. B 79, 033101 (2009).

    Article  ADS  Google Scholar 

  88. Chen, H. T. et al. Antireflection coating using metamaterials and identification of its mechanism. Phys. Rev. Lett. 105, 073901 (2010).

    Article  ADS  Google Scholar 

  89. Burgos, S. P., de Waele, R., Polman, A. & Atwater, H. A. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nature Mater. 9, 407–412 (2010).

    Article  ADS  Google Scholar 

  90. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  91. Liu, N. et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103–1107 (2010).

    Article  ADS  Google Scholar 

  92. Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).

    Article  ADS  Google Scholar 

  93. Klein, M. W., Wegener, M., Feth, N. & Linden, S. Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express 15, 5238–5247 (2007).

    Article  ADS  Google Scholar 

  94. Niesler, F. B. P. et al. Second-harmonic generation from split-ring resonators on a GaAs substrate. Opt. Lett. 34, 1997–1999 (2009).

    Article  ADS  Google Scholar 

  95. Pendry, J. B. Time reversal and negative refraction. Science 322, 71–73 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Wang, B., Zhou, J., Koschny, Th. & Soukoulis, C. M. Nonlinear properties of split ring resonators. Opt. Express 16, 16058–16063 (2008).

    Article  ADS  Google Scholar 

  97. Katko, A. R. et al. Phase conjugation and negative refraction using nonlinear active metamaterials. Phys. Rev. Lett. 105, 123905 (2010).

    Article  ADS  Google Scholar 

  98. Wang, Z. et al. Harmonic image reconstruction assisted by a nonlinear metamaterial surface. Phys. Rev. Lett. 106, 047402 (2011).

    Article  ADS  Google Scholar 

  99. Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

    Article  ADS  Google Scholar 

  100. Papasimakis, N., Fedotov, V. A., Zheludev, N. I. & Prosvirnin, S. L. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903 (2008).

    Article  ADS  Google Scholar 

  101. Tassin, P., Zhang, L., Koschny, Th., Economou, E. N. & Soukoulis, C. M. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009).

    Article  ADS  Google Scholar 

  102. Zhang, L. et al. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl. Phys. Lett. 97, 241904 (2010).

    Article  ADS  Google Scholar 

  103. Paul, O., Imhof, C., Reinhard, B., Zengerle, R. & Beigang, R. Negative index bulk metamaterial at terahertz frequencies. Opt. Express 16, 6736–6744 (2008).

    Article  ADS  Google Scholar 

  104. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  ADS  Google Scholar 

  105. Bayindir, M., Aydin, K., Ozbay, E., Markos, P. & Soukoulis, C. M. Transmission properties of composite metamaterials in free space. Appl. Phys. Lett. 81, 120–122 (2002).

    Article  ADS  Google Scholar 

  106. Greegor, R. B., Parazzoli, C. G., Li, K. & Tanielian, M. H. Origin of dissipative losses in negative index of refraction materials. Appl. Phys. Lett. 82, 2356–2358 (2003).

    Article  ADS  Google Scholar 

  107. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    Article  ADS  Google Scholar 

  108. Linden, S. et al. Magnetic response of metamaterials at 100 THz. Science 306, 1351–1353 (2004).

    Article  ADS  Google Scholar 

  109. Enkrich, C. et al. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95, 203901 (2005).

    Article  ADS  Google Scholar 

  110. Guney, D. O., Koschny, T. & Soukoulis, C. M. Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial. Opt. Express 18, 12348–12353 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Decker, J. Zhou and T. Koschny for preparing the figures and providing useful discussions. This work is supported by the European Union Future and Emerging Technologies project PHOME (contract 213390), Ames Laboratory, the Department of Energy (Basic Energy Sciences) under contract DE-AC02-07CH11358, the US Office of Naval Research under grant N000141010925, AFOSR-MURI under grant FA9550-06-1-0337, the European Union project NIM_NIL (contract 228637), Deutsche Forschungsgemeinschaft through subprojects CFN A1.4 and A1.5, and Bundesministerium für Bildung und Forschung through the project METAMAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas M. Soukoulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soukoulis, C., Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon 5, 523–530 (2011). https://doi.org/10.1038/nphoton.2011.154

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing