Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-divergence semiconductor lasers by plasmonic collimation

Abstract

Surface plasmons offer the exciting possibility of improving the functionality of optical devices through the subwavelength manipulation of light. We show that surface plasmons can be used to shape the beams of edge-emitting semiconductor lasers and greatly reduce their large intrinsic beam divergence. Using quantum cascade lasers as a model system, we show that by defining a metallic subwavelength slit and a grating on their facet, a small beam divergence in the laser polarization direction can be achieved. Divergence angles as small as 2.4° are obtained, representing a reduction in beam spread by a factor of 25 compared with the original 9.9-µm-wavelength laser used. Despite having a patterned facet, our collimated lasers do not suffer significant reductions in output power (100 mW at room temperature). Plasmonic collimation provides a means of efficiently coupling the output of a variety of lasers into optical fibres and waveguides, or to collimate them for applications such as free-space communications, ranging and metrology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the small divergence laser and the two designs.
Figure 2: Simulations.
Figure 3: Experimental results of two devices of the second design.
Figure 4: Line scans of the 2D far-field intensity distributions.
Figure 5: Light output versus current characteristic taken before and after defining the slit-grating structure.

Similar content being viewed by others

References

  1. Lee, A. W. M. et al. High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal–metal waveguides. Opt. Lett. 32, 2840–2842 (2007).

    Article  ADS  Google Scholar 

  2. Amanti, M. I., Fischer, M., Walther, C., Scalari, G. & Faist, J. Horn antennas for terahertz quantum cascade lasers. Electron. Lett. 43, 573–574 (2007).

    Article  Google Scholar 

  3. Troccoli, M., Gmachl, C., Capasso, F., Sivco, D. L. & Cho, A. Y. Mid-infrared (λ ≈ 7.4 µm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality. Appl. Phys. Lett. 80, 4103–4105 (2002).

    Article  ADS  Google Scholar 

  4. Nähle, L., Semmel, J., Kaiser, W., Höfling, S. & Forchel, A. Tapered quantum cascade lasers. Appl. Phys. Lett. 91, 181122 (2007).

    Article  ADS  Google Scholar 

  5. Mühlschlegel, P., Eisler, H. -J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  6. Cubukcu, E., Kort, E. A., Crozier, K. B. & Capasso, F. Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006).

    Article  ADS  Google Scholar 

  7. Yu, N. et al. Plasmonic quantum cascade laser antenna. Appl. Phys. Lett. 91, 173113 (2007).

    Article  ADS  Google Scholar 

  8. Yu, N. et al. Bowtie plasmonic quantum cascade laser antenna. Opt. Express 15, 13272–13281 (2007).

    Article  ADS  Google Scholar 

  9. Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).

    Article  ADS  Google Scholar 

  10. Martín-Moreno, L., García-Vidal, F. J., Lezec, H. J., Degiron, A. & Ebbesen, T. W. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003).

    Article  ADS  Google Scholar 

  11. Baida, F. I., Labeke, D. V. & Guizal, B. Enhanced confined light transmission by single subwavelength apertures in metallic films. Appl. Opt. 42, 6811–6815 (2003).

    Article  ADS  Google Scholar 

  12. Akarca-Biyikli, S. S., Bulu, I. & Ozbay, E. Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture. Appl. Phys. Lett. 85, 1098–1100 (2004).

    Article  ADS  Google Scholar 

  13. Yu, L.-B. et al. Physical origin of directional beaming emitted from a subwavelength slit. Phys. Rev. B 71, 041405(R) (2005).

    Article  ADS  Google Scholar 

  14. Kim, S., Kim, H., Lim, Y. & Lee, B. Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings. Appl. Phys. Lett. 90, 051113 (2007).

    Article  ADS  Google Scholar 

  15. Guo, B., Song, G. & Chen, L. Plasmonic very-small-aperture lasers. Appl. Phys. Lett. 91, 021103 (2007).

    Article  ADS  Google Scholar 

  16. Gao, J., Song, G., Gan, Q., Guo, B. & Chen, L. Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser. Laser Phys. Lett. 4, 234–237 (2007).

    Article  ADS  Google Scholar 

  17. Hirohata, T., Niigaki, M., Mochizuki, T., Fujiwara, H. & Kan, H. Near-infrared photocathode using surface plasmon resonance. Jpn J. Appl. Phys. 46, 630–632 (2007).

    Article  ADS  Google Scholar 

  18. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  19. Stutzman, W. L. & Thiele, G. A. Antenna Theory and Design (John Wiley & Sons, New York, 1981).

    Google Scholar 

  20. Pflügl, C. et al. Single-mode surface-emitting quantum-cascade lasers. Appl. Phys. Lett. 86, 211102 (2005).

    Article  ADS  Google Scholar 

  21. López-Tejeira, F. et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nature Phys. 3, 324–328 (2007).

    Article  ADS  Google Scholar 

  22. Hofstetter, D. et al. Continuous wave operation of a 9.3 µm quantum cascade laser on a Peltier cooler. Appl. Phys. Lett. 78, 1964–1966 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Air Force Office of Scientific Research (AFOSR MURI on Plasmonics) and the Harvard Nanoscale Science and Engineering Centre (NSEC). This work was performed in part at the Centre for Nanoscale Systems (CNS) at Harvard University, a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is part of the Faculty of Arts and Sciences at Harvard University. We would like to thank H. Mosallaei for helpful discussions and suggestions. We acknowledge the contributions of R. Blanchard in the preliminary simulations of the ring-shaped collimators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Capasso.

Supplementary information

Supplementary Information

Supplementary Figures S(1)a–S(1)c (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, N., Fan, J., Wang, Q. et al. Small-divergence semiconductor lasers by plasmonic collimation. Nature Photon 2, 564–570 (2008). https://doi.org/10.1038/nphoton.2008.152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing