Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modular assembly of superstructures from polyphenol-functionalized building blocks

Abstract

The organized assembly of particles into superstructures is typically governed by specific molecular interactions or external directing factors associated with the particle building blocks, both of which are particle-dependent. These superstructures are of interest to a variety of fields because of their distinct mechanical, electronic, magnetic and optical properties. Here, we establish a facile route to a diverse range of superstructures based on the polyphenol surface-functionalization of micro- and nanoparticles, nanowires, nanosheets, nanocubes and even cells. This strategy can be used to access a large number of modularly assembled superstructures, including core–satellite, hollow and hierarchically organized supraparticles. Colloidal-probe atomic force microscopy and molecular dynamics simulations provide detailed insights into the role of surface functionalization and how this facilitates superstructure construction. Our work provides a platform for the rapid generation of superstructured assemblies across a wide range of length scales, from nanometres to centimetres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modularization, assembly and interparticle locking of building blocks analogous to LEGO bricks.
Figure 2: Modular assembly of SiO2, fluorescent melamine resin (MF) particles and polystyrene (PS) particles into spherical 3D superstructures.
Figure 3: Colloidal-probe AFM studies of modular assembly.
Figure 4: Analogous superstructures prepared from versatile building blocks at different dimensional scales.
Figure 5: Structural tailorability of modular-assembled superstructures.

Similar content being viewed by others

References

  1. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotech. 5, 15–25 (2010).

    Article  CAS  Google Scholar 

  2. Xu, L. et al. Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chem. Soc. Rev. 42, 3114–3126 (2013).

    Article  CAS  Google Scholar 

  3. Antonietti, M. & Göltner, C. Superstructures of functional colloids: chemistry on the nanometer scale. Angew. Chem. Int. Ed. 36, 910–928 (1997).

    Article  Google Scholar 

  4. Howes, P. D., Rana, S. & Stevens, M. M. Plasmonic nanomaterials for biodiagnostics. Chem. Soc. Rev. 43, 3835–3853 (2014).

    Article  CAS  Google Scholar 

  5. Chou, L. Y., Zagorovsky, K. & Chan, W. C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotech. 9, 148–155 (2014).

    Article  CAS  Google Scholar 

  6. Hayward, R., Saville, D. & Aksay, I. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 404, 56–59 (2000).

    Article  CAS  Google Scholar 

  7. Cecchini, M. P., Turek, V. A., Paget, J., Kornyshev, A. A. & Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 12, 165–171 (2013).

    Article  CAS  Google Scholar 

  8. Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).

    Article  CAS  Google Scholar 

  9. Yang, S. J., Antonietti, M. & Fechler, N. Self-assembly of metal phenolic mesocrystals and morphosynthetic transformation toward hierarchically porous carbons. J. Am. Chem. Soc. 137, 8269–8273 (2015).

    Article  CAS  Google Scholar 

  10. Guo, S. & Sun, S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 134, 2492–2495 (2012).

    Article  CAS  Google Scholar 

  11. Degtyar, E., Harrington, M. J., Politi, Y. & Fratzl, P. The mechanical role of metal ions in biogenic protein-based materials. Angew. Chem. Int. Ed. 53, 12026–12044 (2014).

    Article  CAS  Google Scholar 

  12. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  13. Schreiber, R. et al. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotech. 9, 74–78 (2014).

    Article  CAS  Google Scholar 

  14. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).

    Article  CAS  Google Scholar 

  15. Zhang, Y., Lu, F., Yager, K. G., van der Lelie, D. & Gang, O. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotech. 8, 865–872 (2013).

    Article  CAS  Google Scholar 

  16. Wang, L., Xu, L., Kuang, H., Xu, C. & Kotov, N. A. Dynamic nanoparticle assemblies. Acc. Chem. Res. 45, 1916–1926 (2012).

    Article  CAS  Google Scholar 

  17. Dinsmore, A. et al. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002).

    Article  CAS  Google Scholar 

  18. Caruso, F., Caruso, R. A. & Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114 (1998).

    Article  CAS  Google Scholar 

  19. Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotech. 6, 580–587 (2011).

    Article  CAS  Google Scholar 

  20. He, J., Liu, Y., Babu, T., Wei, Z. & Nie, Z. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J. Am. Chem. Soc. 134, 11342–11345 (2012).

    Article  CAS  Google Scholar 

  21. Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 11, 82–88 (2016).

    Article  CAS  Google Scholar 

  22. Sperling, M., Velev, O. D. & Gradzielski, M. Controlling the shape of evaporating droplets by ionic strength: formation of highly anisometric silica supraparticles. Angew. Chem. Int. Ed. 53, 586–590 (2014).

    Article  CAS  Google Scholar 

  23. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  24. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  25. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  Google Scholar 

  26. Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. Building plasmonic nanostructures with DNA. Nat. Nanotech. 6, 268–276 (2011).

    Article  CAS  Google Scholar 

  27. Shenton, W., Davis, S. A. & Mann, S. Directed self-assembly of nanoparticles into macroscopic materials using antibody–antigen recognition. Adv. Mater. 11, 449–452 (1999).

    Article  CAS  Google Scholar 

  28. Ejima, H. et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science 341, 154–157 (2013).

    Article  CAS  Google Scholar 

  29. Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    Article  CAS  Google Scholar 

  30. Guo, J. et al. Engineering multifunctional capsules through the assembly of metal–phenolic networks. Angew. Chem. Int. Ed. 53, 5546–5551 (2014).

    Article  CAS  Google Scholar 

  31. Tan, L. H., Xing, H. & Lu, Y. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc. Chem. Res. 47, 1881–1890 (2014).

    Article  CAS  Google Scholar 

  32. Wei, Q. & Haag, R. Universal polymer coatings and their representative biomedical applications. Mater. Horiz. 2, 567–577 (2015).

    Article  CAS  Google Scholar 

  33. Nguyen, T. D., Schultz, B. A., Kotov, N. A. & Glotzer, S. C. Generic, phenomenological, on-the-fly renormalized repulsion model for self-limited organization of terminal supraparticle assemblies. Proc. Natl Acad. Sci. USA 112, E3161–E3168 (2015).

    Article  CAS  Google Scholar 

  34. Hugel, T. & Seitz, M. The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Commun. 22, 989–1016 (2001).

    Article  CAS  Google Scholar 

  35. Rose, S. et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014).

    Article  CAS  Google Scholar 

  36. Penna, M., Mijajlovic, M., Tamerler, C. & Biggs, M. J. Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface. Soft Matter 11, 5192–5203 (2015).

    Article  CAS  Google Scholar 

  37. Meddahi-Pellé, A. et al. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angew. Chem. Int. Ed. 53, 6369–6373 (2014).

    Article  Google Scholar 

  38. Dang, X. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotech. 6, 377–384 (2011).

    Article  CAS  Google Scholar 

  39. Bahng, J. H. et al. Anomalous dispersions of ‘hedgehog’ particles. Nature 517, 596–599 (2015).

    Article  CAS  Google Scholar 

  40. Jakab, K. et al. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2, 022001 (2010).

    Article  Google Scholar 

  41. Souza, G. R. et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotech. 5, 291–296 (2010).

    Article  CAS  Google Scholar 

  42. Grindy, S. C. et al. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 14, 1210–1216 (2015).

    Article  CAS  Google Scholar 

  43. Dai, Y. et al. Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4: Yb3+/Er3+@hydrogel core–shell hybrid microspheres. ACS Nano 6, 3327–3338 (2012).

    Article  CAS  Google Scholar 

  44. Gröschel, A. H. et al. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 503, 247–251 (2013).

    Article  Google Scholar 

  45. Guo, J., Wang, X., Liao, X., Zhanga, W. & Shi, B. Skin collagen fiber-biotemplated synthesis of size-tunable silver nanoparticle-embedded hierarchical intertextures with lightweight and highly efficient microwave absorption properties. J. Phys. Chem. C 116, 8188–8195 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted and funded by the Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology (project number CE140100036). This work was also supported by the ARC under the Australian Laureate Fellowship (F.C., FL120100030) and Discovery Project (F.C., DP130101846) schemes. J.G. is grateful for a scholarship under the Chinese government award for outstanding self-financed students abroad by the China Scholarship Council (CSC). This work was performed in part at the Materials Characterisation and Fabrication Platform (MCFP) at the University of Melbourne and the Victorian Node of the Australian National Fabrication Facility (ANFF). We acknowledge F. Tian, Q. Dai, D. Song, X. Chen, M. Björnmalm, M. Faria, Q. Besford and E. Hirotaka for assistance with experiments. We thank X. Wang, X. Liao and B. Shi for providing the skin collagen matrix and polyphenol extracts. We also thank M. Penna and P. Charchar for useful discussions. A.J.C. and I.Y. acknowledge the generous allocation of high-performance computational resources from the Australian National Computational Infrastructure (NCI), the Western Australian computational facility (iVEC), the Victorian Partnership for Advanced Computing (VPAC), and the Victorian Life Sciences Computational Initiative (VLSCI).

Author information

Authors and Affiliations

Authors

Contributions

J.G. and F.C. conceived the ideas. B.L.T. and R.R.D. conducted the AFM experiments. A.J.C. and I.Y. conceived the modelling approach and performed the MD simulations and the corresponding data analysis. Y.D. performed the luminescence measurements. J.J.R., W.Z., M.H., Y.J. and J.C. assisted with the cell experiments and contributed to the general methodology. J.G., B.L.T., A.J.C., I.Y., J.J.R., J.C. and F.C. drafted the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Frank Caruso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Tardy, B., Christofferson, A. et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nature Nanotech 11, 1105–1111 (2016). https://doi.org/10.1038/nnano.2016.172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing