Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An all-in-one nanopore battery array

Abstract

A single nanopore structure that embeds all components of an electrochemical storage device could bring about the ultimate miniaturization in energy storage. Self-alignment of electrodes within each nanopore may enable closer and more controlled spacing between electrodes than in state-of-art batteries. Such an ‘all-in-one’ nanopore battery array would also present an alternative to interdigitated electrode structures that employ complex three-dimensional geometries with greater spatial heterogeneity. Here, we report a battery composed of an array of nanobatteries connected in parallel, each composed of an anode, a cathode and a liquid electrolyte confined within the nanopores of anodic aluminium oxide, as an all-in-one nanosize device. Each nanoelectrode includes an outer Ru nanotube current collector and an inner nanotube of V2O5 storage material, forming a symmetric full nanopore storage cell with anode and cathode separated by an electrolyte region. The V2O5 is prelithiated at one end to serve as the anode, with pristine V2O5 at the other end serving as the cathode, forming a battery that is asymmetrically cycled between 0.2 V and 1.8 V. The capacity retention of this full cell (relative to 1 C values) is 95% at 5 C and 46% at 150 C, with a 1,000-cycle life. From a fundamental point of view, our all-in-one nanopore battery array unveils an electrochemical regime in which ion insertion and surface charge mechanisms for energy storage become indistinguishable, and offers a testbed for studying ion transport limits in dense nanostructured electrode arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanopore battery geometry.
Figure 2: Electrochemical charge–discharge of a V2O5/Ru nanotube half-cell device.
Figure 3: Electrochemical charge–discharge of a half-cell device at high-rate cycle life.
Figure 4: Rate performance of V2O5 nanotube half cell with planar Au versus Ru-nanotube current collectors.
Figure 5: Deconvolution of charge contributions from CVs.
Figure 6: Symmetrically cycled full cell with voltage window from −1 V to 1 V.
Figure 7: Asymmetrical cycling between 0.2 V and 1.8 V.

Similar content being viewed by others

References

  1. Rhodes, C., Long, J., Pettigrew, K., Stroud, R. & Rolison, D. Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D. Nanoscale 3, 1731–1740 (2011).

    Article  CAS  Google Scholar 

  2. Long, J., Dunn, B., Rolison, D. & White, H. Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004).

    Article  CAS  Google Scholar 

  3. Sun, K. et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 4539–4543 (2013).

    Article  CAS  Google Scholar 

  4. Pikul, J. H., Zhang, H. G., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nature Commun. 4, 1732 (2013).

    Article  Google Scholar 

  5. Gowda, S. R., Reddy, A. L. L. M., Zhan, X. & Ajayan, P. M. Building energy storage device on a single nanowire. Nano Lett. 11, 3329–3333 (2011).

    Article  CAS  Google Scholar 

  6. Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S. B. & Rubloff, G. W. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nature Nanotech. 4, 292–296 (2009).

    Article  CAS  Google Scholar 

  7. Haspert, L. C., Lee, S. B. & Rubloff, G. W. Nano-engineering strategies for metal–insulator–metal electrostatic nanocapacitors. ACS Nano 6, 3528–3536 (2012).

    Article  CAS  Google Scholar 

  8. Haspert, L. C., Gillette, E., Lee, S. B. & Rubloff, G. W. Perspective: hybrid systems combining electrostatic and electrochemical nanostructures for ultrahigh power energy storage. Energy Environ. Sci. 6, 2578–2590 (2013).

    Article  CAS  Google Scholar 

  9. Ruzmetov, D. et al. Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett. 12, 505–511 (2011).

    Article  Google Scholar 

  10. Vahur, Z. & Daniel, B. Modelling polymer electrolytes for 3D-microbatteries using finite element analysis. Electrochim. Acta 57, 237–243 (2011).

    Article  Google Scholar 

  11. Arthur, T. S. et al. Three-dimensional electrodes and battery architectures. MRS Bull. 36, 523–531 (2011).

    Article  CAS  Google Scholar 

  12. Gerasopoulos, K. et al. Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining. ACS Nano 6, 6422–6432 (2012).

    Article  CAS  Google Scholar 

  13. Gnerlich, M. et al. Solid flexible electrochemical supercapacitor using Tobacco mosaic virus nanostructures and ALD ruthenium oxide. J. Micromech. Microeng. 23, 114014 (2013).

    Article  Google Scholar 

  14. White, R. & White, H. Electrochemistry in nanometer-wide electrochemical cells. Langmuir 24, 2850–2855 (2008).

    Article  CAS  Google Scholar 

  15. Matt, K. P., Revati, K., Henry, S. W. & Gregory, A. V. A computationally efficient treatment of polarizable electrochemical cells held at a constant potential. J. Chem. Phys. C 116, 4903–4912 (2012).

    Article  Google Scholar 

  16. Ryan, W. H., Henry, S. W., Bruce, D. & Debra, R. R. 3-D microbatteries. Electrochem Commun. 5, 120–123 (2003).

    Article  Google Scholar 

  17. US Department of Energy Basic Energy Sciences Advisory Committee Mesoscale Science Committee W. From Quanta to the Continuum: Opportunities for Mesoscale Science (Government Printing Office, 2012).

  18. Gregorczyk, K., Banerjee, P. & Rubloff, G. W. Conduction in ultrathin ruthenium electrodes prepared by atomic layer deposition. Mater. Lett. 73, 43–46 (2012).

    Article  CAS  Google Scholar 

  19. Chen, X. et al. Ozone-based atomic layer deposition of crystalline V2O5 films for high performance electrochemical energy storage. Chem. Mater. 24, 1255–1261 (2012).

    Article  CAS  Google Scholar 

  20. Lu, Z. et al. Basic electroanalytical characterization of lithium insertion into thin, well-crystallized V2O5 films. J. Electroanal. Chem. 491, 211–221 (2000).

    Article  CAS  Google Scholar 

  21. Zhou, C. F., Kumar, S., Doyle, C. D. & Tour, J. M. Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes. Chem. Mater. 17, 1997–2002 (2005).

    Article  CAS  Google Scholar 

  22. Wang, S. et al. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 21, 6365–6369 (2011).

    Article  CAS  Google Scholar 

  23. Liu, Y. et al. V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv. Energy Mater. 1, 194–202 (2011).

    Article  CAS  Google Scholar 

  24. Ardizzone, S., Fregonara, G. & Trasatti, S. ‘Inner’ and ‘outer’ active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990).

    Article  CAS  Google Scholar 

  25. Harris, S. J., Timmons, A., Baker, D. R. & Monroe, C. Direct in situ measurements of Li transport in Li-ion battery negative electrodes. Chem. Phys. Lett. 485, 265–274 (2010).

    Article  CAS  Google Scholar 

  26. Harris, S. J. & Lu, P. Effects of inhomogeneities—nanoscale to mesoscale—on the durability of Li-ion batteries. J. Phys. Chem. C 117, 6481–6492 (2013).

    Article  CAS  Google Scholar 

  27. Cleveland, E. R., Banerjee, P., Perez, I., Lee, S. B. & Rubloff, G. W. Profile evolution for conformal atomic layer deposition over nanotopography. ACS Nano 4, 4637–4644 (2010).

    Article  CAS  Google Scholar 

  28. Karki, K. et al. Hoop-strong nanotubes for battery electrodes. ACS Nano 7, 8295–8302 (2013).

    Article  CAS  Google Scholar 

  29. Lei, W. et al. Real-time observation and optimization of tungsten atomic layer deposition process cycle. J. Vac. Sci. Technol. B 24, 780–789 (2006).

    Article  CAS  Google Scholar 

  30. Grubbs, R. K., Steinmetz, N. J. & George, S. M. Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6 . J. Vac. Sci. Technol. B 22, 1811–1821 (2004).

    Article  CAS  Google Scholar 

  31. Kim, W-H. et al. Atomic layer deposition of Ni thin films and application to area-selective deposition. J. Electrochem. Soc. 158, D1–D5 (2011).

    Article  CAS  Google Scholar 

  32. Gregorczyk, K., Henn-Lecordier, L., Gatineau, J., Dussarrat, C. & Rubloff, G. Atomic layer deposition of ruthenium using the novel precursor bis(2,6,6-trimethyl-cyclohexadienyl)ruthenium. Chem. Mater. 23, 2650–2656 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DESC0001160). The authors acknowledge support from the Maryland NanoCenter and the NispLab, and thank C. Wang for providing electrolyte, M. Noked, Y. Xu and C. Sun for discussions regarding electrochemistry and J. Provine for valuable suggestions for noble-metal ALD.

Author information

Authors and Affiliations

Authors

Contributions

C.L., X.C., S.B.L. and G.W.R. conceived and designed the experiments. C.L. and X.C. performed the half-cell experiments. C.L. performed the full-cell experiment. E.I.G. conducted the COMSOL simulation. A.J.P. carried out XPS characterization. K.E.G., A.C.K. and M.A.S. contributed material fabrication tools. C.L., E.I.G., S.B.L. and G.W.R. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Sang Bok Lee or Gary W. Rubloff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Gillette, E., Chen, X. et al. An all-in-one nanopore battery array. Nature Nanotech 9, 1031–1039 (2014). https://doi.org/10.1038/nnano.2014.247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing