Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2

Abstract

The valley degree of freedom in layered transition-metal dichalcogenides provides an opportunity to extend the functionalities of spintronics and valleytronics devices. The achievement of spin-coupled valley polarization induced by the non-equilibrium charge-carrier imbalance between two degenerate and inequivalent valleys has been demonstrated theoretically and by optical experiments. However, the generation of a valley and spin current with the valley polarization in transition-metal dichalcogenides remains elusive. Here we demonstrate a spin-coupled valley photocurrent, within an electric-double-layer transistor based on WSe2, whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further modulated with an external electric field. This room-temperature generation and electric control of a valley and spin photocurrent provides a new property of electrons in transition-metal dichalcogenide systems, and thereby enables additional degrees of control for quantum-confined spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagrams of the CPGE based on Rashba spin splitting, and the crystal/electronic structure of layered 2H-WSe2.
Figure 2: Schematic diagram and incident angle-dependent CPGE measurement of ambipolar WSe2 EDLTs.
Figure 3: Electric field modulation of the spin photocurrent in WSe2 EDLTs.
Figure 4: Light-polarization-dependent photocurrent in biased WSe2 EDLTs with different incidence angles.
Figure 5: Physical origin of the generation of spin-coupled valley photocurrent in WSe2 EDLTs and its electric field modulation.

Similar content being viewed by others

References

  1. Murakami, S., Nagaosa, N. & Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  CAS  Google Scholar 

  2. Awschalom, D. D. & Flatte, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  3. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  4. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    Article  CAS  Google Scholar 

  5. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  CAS  Google Scholar 

  6. Ivchenko, E. L. & Ganichev, S. D. in Spin Physics in Semiconductors (ed. Dyakonov, M. I.) 245–277 (Springer Series in Solid Sciences 157, Springer, 2008).

    Book  Google Scholar 

  7. Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells. J. Phys. Condens. Matter 15, R935–R983 (2003).

    Article  CAS  Google Scholar 

  8. McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nature Nanotech. 7, 96–100 (2012).

    Article  CAS  Google Scholar 

  9. Karch, J. et al. Photoexcitation of valley-orbit currents in (111)-oriented silicon metal–oxide-semiconductor field-effect transistors. Phys. Rev. B 83, 121312 (2011).

    Article  Google Scholar 

  10. Karch, J. et al. Orbital photogalvanic effects in quantum-confined structures. J. Phys. Condens. Matter 22, 355307 (2010).

    Article  CAS  Google Scholar 

  11. Bychkov, Y. A. & Rashba, E. I. Properties of a 2d electron-gas with lifted spectral degeneracy. J. Exp. Theor. Phys. Lett. 39, 78–81 (1984).

    Google Scholar 

  12. Winkler, R. Spin orientation and spin precession in inversion-asymmetric quasi-two-dimensional electron systems. Phys. Rev. B 69, 045317 (2004).

    Article  Google Scholar 

  13. Xiao, D., Liu, G. B., Feng, W. X., Xu, X. D. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  14. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  Google Scholar 

  15. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    Article  CAS  Google Scholar 

  16. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  17. Mak, K. F., He, K. L., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  18. Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  19. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  Google Scholar 

  20. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    Article  CAS  Google Scholar 

  21. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).

    Article  Google Scholar 

  22. Yuan, H. T. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013).

    Article  CAS  Google Scholar 

  23. Zhu, Z. Y., Cheng, Y. C. & Schwingenschlogl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Article  Google Scholar 

  24. Yuan, H. T. et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009).

    Article  CAS  Google Scholar 

  25. Efetov, D. K. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article  Google Scholar 

  26. Dhoot, A. S., Israel, C., Moya, X., Mathur, N. D. & Friend, R. H. Large electric field effect in electrolyte-gated manganites. Phys. Rev. Lett. 102, 136402 (2009).

    Article  Google Scholar 

  27. Ueno, K. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nature Nanotech. 6, 408–412 (2011).

    Article  CAS  Google Scholar 

  28. Bollinger, A. T. et al. Superconductor–insulator transition in La2- xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).

    Article  CAS  Google Scholar 

  29. Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).

    Article  CAS  Google Scholar 

  30. Jeong, J. et al. Suppression of metal–insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    Article  CAS  Google Scholar 

  31. Yin, C. M. et al. Tunable surface electron spin splitting with electric double-layer transistors based on InN. Nano Lett. 13, 2024–2029 (2013).

    Article  CAS  Google Scholar 

  32. Shibata, K., Yuan, H. T., Iwasa, Y. & Hirakawa, K. Large modulation of zero-dimensional electronic states in quantum dots by electric-double-layer gating. Nature Commun. 4, 2664 (2013).

    Article  Google Scholar 

  33. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nature Mater. 7, 900–906 (2008).

    Article  CAS  Google Scholar 

  34. Olbrich, P. et al. Observation of the orbital circular photogalvanic effect. Phys. Rev. B 79, 121302 (2009).

    Article  Google Scholar 

  35. Ezawa, M. Spin-valley optical selection rule and strong circular dichroism in silicene. Phys. Rev. B 86, 161407 (2012).

    Article  Google Scholar 

  36. Kresse, G. & Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  39. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964).

    Article  Google Scholar 

  40. Schutte, W. J., Deboer, J. L. & Jellinek, F. Crystal-structures of tungsten disulfide and diselenide. J. Solid State Chem. 70, 207–209 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. B.L., H-J.Z., G.X., H.Y.H. and S-C.Z. also acknowledge FAME, one of six centres of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. X-Q.W. and B.S. acknowledge the National Basic Research Program of China (No. 2012CB619300 and 2013CB921900) and the NSFC of China (No. 61225019, 11023003 and 61376060).

Author information

Authors and Affiliations

Authors

Contributions

H-T.Y., X-Q.W. and B.L. contributed equally to this work. H-T.Y., H.Y.H. and Y.C. conceived and designed the experiments. H-T.Y. performed the sample fabrication and all optical and transport measurements. H-T.Y., X-F.F., X-Q.W. and B.S. performed the CPGE measurements. B.L., H-J.Z., G.X., Y.X. and S-C.Z. performed all the DFT calculations and theoretical analyses. S-C.Z., H.Y.H. and Y.C. supervised the project. H-T.Y., B.L. and H-J.Z. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Harold Y. Hwang or Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Wang, X., Lian, B. et al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nature Nanotech 9, 851–857 (2014). https://doi.org/10.1038/nnano.2014.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing