Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transport spectroscopy of symmetry-broken insulating states in bilayer graphene

Abstract

Bilayer graphene is an attractive platform for studying new two-dimensional electron physics1,2,3,4,5, because its flat energy bands are sensitive to out-of-plane electric fields and these bands magnify electron–electron interaction effects. Theory6,7,8,9,10,11,12,13,14,15,16 predicts a variety of interesting broken symmetry states when the electron density is at the carrier neutrality point, and some of these states are characterized by spontaneous mass gaps, which lead to insulating behaviour. These proposed gaps6,7,10 are analogous17,18 to the masses generated by broken symmetries in particle physics, and they give rise to large Berry phase effects8,19 accompanied by spontaneous quantum Hall effects7,8,9,20. Although recent experiments21,22,23,24,25 have provided evidence for strong electronic correlations near the charge neutrality point, the presence of gaps remains controversial. Here, we report transport measurements in ultraclean double-gated bilayer graphene and use source–drain bias as a spectroscopic tool to resolve a gap of 2 meV at the charge neutrality point. The gap can be closed by a perpendicular electric field of strength 15 mV nm−1, but it increases monotonically with magnetic field, with an apparent particle–hole asymmetry above the gap. These data represent the first spectroscopic mapping of the ground states in bilayer graphene in the presence of both electric and magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device image, proposed gapped states in bilayer graphene and quantum Hall data at 300 mK.
Figure 2: Transport data at B = 0 and T = 300 mK.
Figure 3: Transport data in magnetic field at n = 0 and E = 0.
Figure 4: Transport data at constant B.

Similar content being viewed by others

References

  1. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  4. McCann, E. & Fal'ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Article  Google Scholar 

  5. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  6. Min, H., Borghi, G., Polini, M. & MacDonald, A. H. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008).

    Article  Google Scholar 

  7. Nandkishore, R. & Levitov, L. Quantum anomalous Hall state in bilayer graphene. Phys. Rev. B 82, 115124 (2010).

    Article  Google Scholar 

  8. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. A. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article  Google Scholar 

  9. Jung, J., Zhang, F. & MacDonald, A. H. Lattice theory of pseudospin ferromagnetism in bilayer graphene: competing interaction-induced quantum Hall states. Phys. Rev. B 83, 115408 (2011).

    Article  Google Scholar 

  10. Zhang, F., Min, H., Polini, M. & MacDonald, A. H. Spontaneous inversion symmetry breaking in graphene bilayers. Phys. Rev. B 81, 041402 (R) (2010).

    Article  Google Scholar 

  11. Lemonik, Y., Aleiner, I. L., Toke, C. & Fal'ko, V. I. Spontaneous symmetry breaking and Lifshitz transition in bilayer graphene. Phys. Rev. B 82, 201408 (2010).

    Article  Google Scholar 

  12. Vafek, O. & Yang, K. Many-body instability of Coulomb interacting bilayer graphene: renormalization group approach. Phys. Rev. B 81, 041401 (2010).

    Article  Google Scholar 

  13. Castro, E. V., Peres, N. M. R., Stauber, T. & Silva, N. A. P. Low-density ferromagnetism in biased bilayer graphene. Phys. Rev. Lett. 100, 186803 (2008).

    Article  Google Scholar 

  14. Martin, I., Blanter, Y. M. & Morpurgo, A. F. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

    Article  Google Scholar 

  15. Kharitonov, M. Canted antiferromagnetic phase of the ν = 0 quantum Hall state in bilayer graphene. Preprint at arXiv:1105.5386v1101 (2011).

  16. Zhang, F. & MacDonald, A. H. Distinguishing spontaneous quantum Hall states in graphene bilayers. Preprint at arXiv:1107.4727v1101 (2011).

  17. Gorbar, E. V., Gusynin, V. P. & Miransky, V. A. Dynamics and phase diagram of the ν = 0 quantum Hall state in bilayer graphene. Phys. Rev. B 81, 155451 (2010).

    Article  Google Scholar 

  18. Herbut, I. F., Juricic, V. & Vafek, O. Relativistic Mott criticality in graphene. Phys. Rev. B 80, 075432 (2009).

    Article  Google Scholar 

  19. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  20. Vafek, O. Interacting fermions on the honeycomb bilayer: from weak to strong coupling. Phys. Rev. B 82, 205106 (2010).

    Article  Google Scholar 

  21. Martin, J., Feldman, B. E., Weitz, R. T., Allen, M. T. & Yacoby, A. Local compressibility measurements of correlated states in suspended bilayer graphene. Phys. Rev. Lett. 105, 256806 (2010).

    Article  CAS  Google Scholar 

  22. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    Article  CAS  Google Scholar 

  23. Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Phys. 7, 948–952 (2011).

    Article  CAS  Google Scholar 

  24. Freitag, F., Trbovic, J., Weiss, M. & Schonenberger, C. Spontaneously gapped ground state in suspended bilayer graphene. Preprint at arXiv:1104.3816vs (2011).

  25. Mayorov, A. S. et al. Interaction-driven spectrum reconstruction in bilayer graphene. Science 333, 860–863 (2011).

    Article  CAS  Google Scholar 

  26. Min, H. K., Sahu, B., Banerjee, S. K. & MacDonald, A. H. Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007).

    Article  Google Scholar 

  27. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  CAS  Google Scholar 

  28. Barlas, Y., Cote, R., Nomura, K. & MacDonald, A. H. Intra-Landau-level cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 101, 097601 (2008).

    Article  Google Scholar 

  29. Zhao, Y., Cadden-Zimansky, P., Jiang, Z. & Kim, P. Symmetry breaking in the zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010).

    Article  CAS  Google Scholar 

  30. Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Phys. Status Solidi B 5, 889–893 (2009).

    CAS  Google Scholar 

  31. Bao, W. et al. Magnetoconductance oscillations and evidence for fractional quantum Hall states in suspended bilayer and trilayer graphene. Phys. Rev. Lett. 105, 246601 (2010).

    Article  Google Scholar 

  32. Mucha-Kruczynski, M., Aleiner, I. L. & Fal'ko, V. I. Strained bilayer graphene: band structure topology and Landau level spectrum. Phys. Rev. B 84, 041404(R) (2011).

    Article  Google Scholar 

  33. Haldane, F. D. M. Model for a quantum Hall-effect without landau-levels—condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  CAS  Google Scholar 

  34. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  35. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  36. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  37. Raghu, S., Qi, X. L., Honerkamp, C. & Zhang, S. C. Topological Mott insulators. Phys. Rev. Lett. 100, 156401 (2008).

    Article  CAS  Google Scholar 

  38. Henriksen, E. A. et al. Cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 100, 087403 (2008).

    Article  CAS  Google Scholar 

  39. Castro, E. V., Peres, N. M. R. & dos Santos, J. M. B. L. Gaped graphene bilayer: disorder and magnetic field effects. Phys. Stat. Sol. B 244, 2311–2316 (2007).

    Article  CAS  Google Scholar 

  40. Borghi, G., Polini, M., Asgari, R. & MacDonald, A. H. Fermi velocity enhancement in monolayer and bilayer graphene. Solid State Commun. 149, 1117–1122 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Nandkishore, B. Feldman, A. Yacoby, L. Levitov, P. Jarillo-Herrero and K. Novoselov for stimulating discussions, and D. Humphrey, G. Liu, A. Zhao and H. Zhang for assistance with fabrication. This work was supported in part by the UC LabFees programme, NSF CAREER DMR/0748910, NSF/1106358, ONR N00014-09-1-0724, ONR/DMEA H94003-10-2-1003 and the FENA Focus Center. D.S. acknowledges support from NHMFL UCGP #5068. Part of this work was performed at NHMFL, which is supported by NSF/DMR-0654118, the State of Florida, and DOE. A.M., J. J. and F.Z. acknowledge support from the Welch Foundation (grant TBF1473), NRI-SWAN and DOE (grant DE-FG03-02ER45958). C.V. acknowledges support from NSF DMR-0906530. V.A. acknowledges support from UCR I.C.

Author information

Authors and Affiliations

Authors

Contributions

C.N.L and J.V. conceived the experiments. Y.J. and P.K. isolated and identified the graphene sheets. R.S. assisted with sample preparation. J.V., L.J., W.B., Y.J. and D.S. performed transport measurements. C.N.L, M.B., W.B. and J.V. interpreted and analysed the data. V.A., C.V., F.Z., J.J. and A.H.M. interpreted data and performed theoretical calculations. C.N.L., J.V., F.Z., J.J. and A.H.M. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to C. N. Lau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2944 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, J., Jing, L., Bao, W. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nature Nanotech 7, 156–160 (2012). https://doi.org/10.1038/nnano.2011.251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing