Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses

Abstract

A major barrier to drug and gene delivery is crossing the cell's plasma membrane. Physical forces applied to cells via electroporation1, ultrasound2 and laser irradiation3,4,5,6 generate nanoscale holes in the plasma membrane for direct delivery of drugs into the cytoplasm. Inspired by previous work showing that laser excitation of carbon nanoparticles can drive the carbon-steam reaction to generate highly controlled shock waves7,8,9,10, we show that carbon black nanoparticles activated by femtosecond laser pulses can facilitate the delivery of small molecules, proteins and DNA into two types of cells. Our initial results suggest that interaction between the laser energy and carbon black nanoparticles may generate photoacoustic forces by chemical reaction to create transient holes in the membrane for intracellular delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular uptake in cells exposed to femtosecond laser irradiation in the presence of CB.
Figure 2: Effect of CB nanoparticle and cell type on uptake and viability.
Figure 3: Uptake and expression of plasmid DNA.
Figure 4: Effect of laser fluence and exposure time on intracellular calcein uptake (a) and cell viability (b) in DU145 cells.
Figure 5: Effect of irradiation conditions on intracellular uptake of calcein in DU145 cells.

Similar content being viewed by others

References

  1. Bodles-Brakhop, A. M., Heller, R. & Draghia-Akli, R. Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol. Ther. 17, 585–592 (2009).

    Article  CAS  Google Scholar 

  2. Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nature Rev. Drug Discov. 4, 255–260 (2005).

    Article  CAS  Google Scholar 

  3. Tao, W., Wilkinson, J., Stanbridge, E. J. & Berns, M. W. Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane. Proc. Natl Acad. Sci. USA 84, 4180–4184 (1987).

    Article  CAS  Google Scholar 

  4. Tirlapur, U. K. & Konig, K. Targeted transfection by femtosecond laser. Nature 418, 290–291 (2002).

    Article  CAS  Google Scholar 

  5. Kodama, T., Doukas, A. G. & Hamblin, M. R. Shock wave-mediated molecular delivery into cells. Biochim. Biophys. Acta 1542, 186–194 (2002).

    Article  CAS  Google Scholar 

  6. Esenaliev, R. O., Larina, I. V., Larin, K. V., Motamedi, M. & Evers, B. M. Mechanism of laser-induced drug delivery in tumors. Proc. SPIE 3914, 188–196 (2000).

    Article  CAS  Google Scholar 

  7. Löwen, H. & Madden, P. A. A microscopic mechanism for shock-wave generation in pulsed-laser-heated colloidal suspensions. J. Chem. Phys. 97, 8760–8766 (1992).

    Article  Google Scholar 

  8. Chen, H. & Diebold, G. Chemical generation of acoustic waves: a giant photoacoustic effect. Science 270, 963–966 (1995).

    Article  CAS  Google Scholar 

  9. Chen, H., McGrath, T. & Diebold, G. J. Laser chemistry in suspensions: new products and unique reaction conditions for the carbon-steam reaction. Angew. Chem. Int. Ed. Engl. 36, 163–166 (1997).

    Article  CAS  Google Scholar 

  10. McGrath, T. E., Diebold, G. J., Bartels, D. M. & Crowell, R. A. Laser-initiated chemical reactions in carbon suspensions. J. Phys. Chem. A 106, 10072–10078 (2002).

    Article  CAS  Google Scholar 

  11. Lu, S., Wang, S. & Grimes-Serrano, J. M. Current progress of DNA vaccine studies in humans. Expert Rev. Vaccines 7, 175–191 (2008).

    Article  CAS  Google Scholar 

  12. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nature Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  Google Scholar 

  13. Desnick, R. J. Enzyme replacement and enhancement therapies for lysosomal diseases. J. Inherit. Metab. Dis. 27, 385–410 (2004).

    Article  CAS  Google Scholar 

  14. Nobili, S., Landini, I., Giglioni, B. & Mini, E. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets 7, 861–879 (2006).

    Article  CAS  Google Scholar 

  15. Young, L. S., Searle, P. F., Onion, D. & Mautner, V. Viral gene therapy strategies: from basic science to clinical application. J. Pathol. 208, 299–318 (2006).

    Article  CAS  Google Scholar 

  16. Lavigne, M. D. & Gorecki, D. C. Emerging vectors and targeting methods for nonviral gene therapy. Expert Opin. Emerg. Drugs 11, 541–557 (2006).

    Article  CAS  Google Scholar 

  17. Mehier-Humbert, S. & Guy, R. H. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57, 733–753 (2005).

    Article  CAS  Google Scholar 

  18. Esenaliev, R. O. Application of light and ultrasound for medical diagnostics and treatment. Proc. SPIE 4707, 158–164 (2002).

    Article  CAS  Google Scholar 

  19. ter Haar, G. Therapeutic applications of ultrasound. Prog. Biophys. Mol. Biol. 93, 111–129 (2007).

    Article  Google Scholar 

  20. Hernot, S. & Klibanov, A. L. Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 60, 1153–1166 (2008).

    Article  CAS  Google Scholar 

  21. Hynynen, K. Ultrasound for drug and gene delivery to the brain. Adv. Drug Deliv. Rev. 60, 1209–1217 (2008).

    Article  CAS  Google Scholar 

  22. Lukacs, G. L. et al. Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 275, 1625–1629 (2000).

    Article  CAS  Google Scholar 

  23. Sun, X. et al. Investigation of an optical limiting mechanism in multiwalled carbon manotubes. Appl. Opt. 39, 1998–2001 (2000).

    Article  CAS  Google Scholar 

  24. Link, S., Burda, C., Nikoobakht, B. & El-Sayed, M. A. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104, 6152–6163 (2000).

    Article  CAS  Google Scholar 

  25. Fayer, M. Picosecond holographic grating generation of ultrasonic waves. IEEE J. Quant. Electron. 22, 1437–1452 (1986).

    Article  Google Scholar 

  26. Brukh, R. & Mitra, S. Kinetics of carbon nanotube oxidation. J. Mater. Chem. 17, 619–623 (2007).

    Article  CAS  Google Scholar 

  27. Zhao, N., He, C., Jiang, Z., Li, J. & Li, Y. Physical activation and characterization of multi-walled carbon nanotubes catalytically synthesized from methane. Mater. Lett. 61, 681–685 (2007).

    Article  CAS  Google Scholar 

  28. Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  CAS  Google Scholar 

  29. Zarnitsyn, V. G. & Prausnitz, M. R. Physical parameters influencing optimization of ultrasound-mediated DNA transfection. Ultrasound Med. Biol. 30, 527–538 (2004).

    Article  Google Scholar 

  30. Guzman, H. R., Nguyen, D. X., Khan, S. & Prausnitz, M. R. Ultrasound-mediated disruption of cell membranes I: quantification of molecular uptake and cell viability. J. Acoust. Soc. Am. 110, 588–596 (2001).

    Article  CAS  Google Scholar 

  31. Schlicher, R. K. et al. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol. 32, 915–924 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Graham for use of his pressure measurement apparatus, S. Nair for technical discussions, and J.-H. Park, D. Hallow, R. Schlicher, J. Hutcheson and Y. Liu for helpful discussions and laboratory assistance. This work was supported in part by the U.S. National Institutes of Health and Institute of Paper Science and Technology and was carried out in the Institute for Bioengineering and Biosciences, Center for Drug Design, Development and Delivery, and Laser Dynamics Laboratory at Georgia Tech.

Author information

Authors and Affiliations

Authors

Contributions

P.C. carried out the study in collaboration with W.Q., who provided laser expertise. M.R.P. and M.A.E. were the principal investigators. All authors participated in study design and interpretation. P.C. and M.R.P. wrote the paper.

Corresponding author

Correspondence to Mark R. Prausnitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarty, P., Qian, W., El-Sayed, M. et al. Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nature Nanotech 5, 607–611 (2010). https://doi.org/10.1038/nnano.2010.126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.126

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research