Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons

Abstract

The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a photonic–plasmonic device that is fully compatible with atomic force microscopy and Raman spectroscopy. Our approach relies on the generation and localization of surface plasmon polaritons by means of adiabatic compression through a metallic tapered waveguide to create strongly enhanced Raman excitation in a region just a few nanometres across. The tapered waveguide can also be used as an atomic force microscope tip. Using the device, topographic, chemical and structural information about silicon nanocrystals may be obtained with a spatial resolution of 7 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tapered waveguide on an AFM cantilever and experimental apparatus.
Figure 2: Experimental test of SPP generation and propagation along the tapered waveguide.
Figure 3: Theoretical field enhancement in the plasmonic tapered waveguide.
Figure 4: AFM topography of the nanostructured sample.
Figure 5: Wide-scan Raman spectra and three-dimensional map of a silicon nanocrystal/SiOx surface.
Figure 6: High-resolution AFM and Raman mapping.

Similar content being viewed by others

References

  1. Raether, H. Surface Plasmons (Springer, 1988).

    Google Scholar 

  2. Masuhara, H. & Kawata, S. (eds) Nanoplasmonics Vol. 2 (Elsevier, 2006).

    Google Scholar 

  3. Murray, W. A. & Barnes W. L. Plasmonic materials. Adv. Mater. 19, 3771–3782 (2007).

    Article  CAS  Google Scholar 

  4. Kino, G. Tuning into optical wavelengths. Nature Photon. 2, 210–211 (2008) and references therein.

    Article  CAS  Google Scholar 

  5. Zheludev, N. I. What diffraction limit? Nature Mater. 7, 420–422 (2008).

    Article  CAS  Google Scholar 

  6. Zhang, X. & Liu, Z. Superlenses to overcome the diffraction limit. Nature Mater. 7, 435–441 (2008).

    Article  CAS  Google Scholar 

  7. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  8. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  9. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  10. Verhagen, E., Kuipers, L. & Polman, A. Enhanced nonlinear optical effects with a tapered plasmonic waveguide. Nano Lett. 7, 334–337 (2007).

    Article  CAS  Google Scholar 

  11. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Article  CAS  Google Scholar 

  12. Merlein, J. et al. Nanomechanical control of an optical antenna. Nature Photon. 2, 230–233 (2008).

    Article  CAS  Google Scholar 

  13. Zenobi, R. Analytical tools for the nano world. Anal. Bioanal. Chem. 390, 215–221 (2008).

    Article  CAS  Google Scholar 

  14. Gerhardt, I. et al. Scanning near-field optical coherent spectroscopy of single molecules at 1.4 K. Opt. Lett. 32, 1420–1422 (2007).

    Article  Google Scholar 

  15. Hartschuh, A., Pedrosa, H. N., Novotny, L. & Krauss, T. D. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003).

    Article  CAS  Google Scholar 

  16. Di Fabrizio, E. et al. Procedimenti di fabbricazione di un dispositivo a crista llo fotonico provvisto di guida d'onda plasmonica. Italian patent TO2008A000693 (2008).

  17. Andreani, L. C. & Gerace, D. Photonic crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method. Phys. Rev. B 73, 235114 (2006).

    Article  Google Scholar 

  18. De Angelis, F. et al. Hybrid plasmonic–photonic nanodevice for label-free few/single molecule detection in the far field. Nano Lett. 8, 2321–2327 (2008).

    Article  CAS  Google Scholar 

  19. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  Google Scholar 

  20. Babadjanian, A. J., Margaryan, N. L. & Nerkararyan, V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87, 3785–3793 (1999).

    Article  Google Scholar 

  21. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3133 (2000).

    Article  CAS  Google Scholar 

  22. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

    Article  CAS  Google Scholar 

  23. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    Article  Google Scholar 

  24. Hartschuh, A., Sanchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  Google Scholar 

  25. Hu, D. H., Micic, M., Klymyshyn, N., Suh, Y. D. & Lu, H. P. Correlated topographic and spectroscopic imaging by combined atomic force microscopy and optical microscopy. J. Lumin. 107, 4–12 (2004).

    Article  CAS  Google Scholar 

  26. Anderson, N., Anger, P., Hartschuh, A. & Novotny, L. Subsurface Raman imaging with nanoscale resolution. Nano Lett. 6, 744–749 (2006).

    Article  CAS  Google Scholar 

  27. Mchedlidze, T. et al. Light-induced solid-to-solid phase transformation in Si nanolayers Si–SiO2 multiple quantum wells. Phys. Rev. B 77, 161304 (2008).

    Article  Google Scholar 

  28. Richter, H., Wang, Z. P. & Ley, L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981).

    Article  CAS  Google Scholar 

  29. dos Santos, D. R. & Torriani, I. L. Crystallite size determination in μc–Ge films by X-ray diffraction and Raman line profile analysis. Solid State Commun. 85, 307–309 (1993).

    Article  CAS  Google Scholar 

  30. Kohno, H., Iwasaki, T., Mita, Y. & Takeda, S. One-phonon Raman scattering studies of chains of crystalline-Si nanospheres. J. Appl. Phys. 91, 3232–3235 (2002).

    Article  CAS  Google Scholar 

  31. Fauchet, P. H. & Campbell, I. H. Raman spectroscopy of low dimensional semiconductors. Crit. Rev. Solid State Mater. Sci. 14, S79–S101 (1988).

    Article  Google Scholar 

  32. Rojas, S., Zanotti, L., Borghesi, A., Sasella, A. & Pignatel, G. U. Characterization of silicon dioxide and phosphosilicate glass deposited films. J. Vac. Sci. Technol. B 11, 2081–2089 (1993).

    Article  CAS  Google Scholar 

  33. Daldosso, N. et al. Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 101, 113510 (2007).

    Article  Google Scholar 

  34. Khriachtchev, L., Rasanen, M. & Novikov, S. Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO2 superlattice. Appl. Phys. Lett. 88, 013102 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded under European Project DIPNA FP6-STREP proposal no. 032131, Project SMD FP7-NMP 2800-SMALL-2 proposal no. CP-FP 229375-2, MIUR-PRIN2008 project—Italian Ministry of University and Research, FIRB contract no. RBAP06L4S5, Fondazione Cariplo project 2007-5259, and project POSEIDON under POR Calabria 2006-2008. M.L. and A.B. acknowledge funding from FP6-BINASP-SSA011936 project.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to the work presented in this paper.

Corresponding author

Correspondence to Enzo Di Fabrizio.

Supplementary information

Supplementary information

Supplementary information (PDF 2393 kb)

Supplementary information

Supplementary movie 1 (MOV 4827 kb)

Supplementary information

Supplementary movie 2 (MOV 2872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Angelis, F., Das, G., Candeloro, P. et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nature Nanotech 5, 67–72 (2010). https://doi.org/10.1038/nnano.2009.348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.348

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing