Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Design considerations for tumour-targeted nanoparticles

Abstract

Inorganic/organic hybrid nanoparticles are potentially useful in biomedicine, but to avoid non-specific background fluorescence and long-term toxicity, they need to be cleared from the body within a reasonable timescale1. Previously, we have shown that rigid spherical nanoparticles such as quantum dots can be cleared by the kidneys if they have a hydrodynamic diameter of approximately 5.5 nm and a zwitterionic surface charge2. Here, we show that quantum dots functionalized with high-affinity small-molecule ligands that target tumours can also be cleared by the kidneys if their hydrodynamic diameter is less than this value, which sets an upper limit of 5–10 ligands per quantum dot for renal clearance. Animal models of prostate cancer and melanoma show receptor-specific imaging and renal clearance within 4 h post-injection. This study suggests a set of design rules for the clinical translation of targeted nanoparticles that can be eliminated through the kidneys.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and characterization of nanoparticles.
Figure 2: Live cell binding of targeted QDs in vitro.
Figure 3: Total body clearance of targeted nanoparticles 4 h post intravenous injection into CD-1 mice.
Figure 4: In vivo fluorescence imaging of human prostate cancer and melanoma xenograft tumours.
Figure 5: Hydrodynamic diameter measurements of renally excreted QDs.

Similar content being viewed by others

References

  1. Frangioni, J. V. New technologies for human cancer imaging. J. Clin. Oncol. 26, 4012–4021 (2008).

    Article  Google Scholar 

  2. Choi, H. S. et al. Renal clearance of quantum dots. Nature Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  3. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    Article  CAS  Google Scholar 

  4. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  5. Michalet, X. et al. Quantum dots for live cells, in vivo imaging and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  6. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  7. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  Google Scholar 

  8. Frangioni, J. V. Translating in vivo diagnostics into clinical reality. Nature Biotechnol. 24, 909–913 (2006).

    Article  CAS  Google Scholar 

  9. Colvin, V. The potential environmental impact of engineered nanomaterials. Nature Biotechnol. 21, 1166–1170 (2003).

    Article  CAS  Google Scholar 

  10. Duncan, R. Polymer conjugates as anticancer nanomedicines. Nature Rev. Cancer 6, 688–701 (2006).

    Article  CAS  Google Scholar 

  11. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnol. 23, 1418–1423 (2005).

    Article  CAS  Google Scholar 

  12. Ballou, B. et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug. Chem. 18, 389–396 (2007).

    Article  CAS  Google Scholar 

  13. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnol. 26, 83–90 (2008).

    Article  CAS  Google Scholar 

  14. Peer, D. et al. Nanocarriers: emerging platforms for cancer therapy. Nature Nanotech. 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  15. Hamad, I., Hunter, A. C., Szebeni, J. & Moghimi, S. M. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol. Immunol. 46, 225–232 (2008).

    Article  CAS  Google Scholar 

  16. Dobrovolskaia, M. A. & McNeil, S. E. Immunological properties of engineered nanomaterials. Nature Nanotech. 2, 469–478 (2007).

    Article  CAS  Google Scholar 

  17. Yang, J. et al. Development of aliphatic biodegradable photoluminescent polymers. Proc. Natl Acad. Sci. USA 106, 10086–10091 (2009).

    Article  CAS  Google Scholar 

  18. Barstow, L. & Small, R. E. Liver function assessment by drug metabolism. Pharmacotherapy 10, 280–288 (1990).

    CAS  Google Scholar 

  19. McAfee, J. G. et al. Technetium-99 m DADS complexes as renal function and imaging agents: II. Biological comparison with iodine-131 hippuran. J. Nucl. Med. 26, 375–384 (1985).

    CAS  Google Scholar 

  20. Cai, W. et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669–676 (2006).

    Article  CAS  Google Scholar 

  21. Smith, A. M., Duan, H., Mohs, A. M. & Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60, 1226–1240 (2008).

    Article  CAS  Google Scholar 

  22. Chen, K., Li, Z. B., Wang, H., Cai, W. & Chen, X. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur. J. Nucl. Med. Mol. Imaging 35, 2235–2244 (2008).

    Article  CAS  Google Scholar 

  23. Bentolila, L. A., Ebenstein, Y. & Weiss, S. Quantum dots for in vivo small-animal imaging. J. Nucl. Med. 50, 493–496 (2009).

    Article  CAS  Google Scholar 

  24. Matsumura, Y., Oda, T. & Maeda, H. General mechanism of intratumor accumulation of macromolecules: advantage of macromolecular therapeutics. Gan To Kagaku Ryoho 14, 821–829 (1987).

    CAS  Google Scholar 

  25. Humblet, V. et al. High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen. Mol. Imaging 4, 448–462 (2005).

    Article  Google Scholar 

  26. Chen, X., Park, R., Shahinian, A. H., Bading, J. R. & Conti, P. S. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl. Med. Biol. 31, 11–19 (2004).

    Article  CAS  Google Scholar 

  27. Liu, W. et al. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J. Am. Chem. Soc. 129, 14530–14531 (2007).

    Article  CAS  Google Scholar 

  28. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Rev. Drug Discov. 7, 771–782 (2008).

    Article  CAS  Google Scholar 

  29. Choi, H. S. et al. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 9, 2354–2359 (2009).

    Article  CAS  Google Scholar 

  30. Tanaka, E., Choi, H. S., Fujii, H., Bawendi, M. G. & Frangioni, J. V. Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann. Surg. Oncol. 13, 1671–1681 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Support from the Biophysical Instrumentation Facility for the Study of Complex Macromolecular Systems (NSF-0070319 and NIH GM68762) is gratefully acknowledged. This work was supported in part by NIH grant no. R33-EB-000673 (J.V.F. and M.G.B), NIH grant no. R01-CA-115296 (J.V.F.), and a fellowship from the Charles A. King Trust, Bank of America, Co-Trustee (H.S.C.). M.G.B. also acknowledges support from the NIH-funded MIT-Harvard NanoMedical Consortium (1U54-CA119349, a Center of Cancer Nanotechnology Excellence).

Author information

Authors and Affiliations

Authors

Contributions

H.S.C., W.L., F.L., K.N. and P.M. performed the experiments. H.S.C., M.G.B. and J.V.F. reviewed, analysed and interpreted the data. H.S.C., M.G.B. and J.V.F. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to John V. Frangioni.

Supplementary information

Supplementary information

Supplementary information (PDF 1436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Liu, W., Liu, F. et al. Design considerations for tumour-targeted nanoparticles. Nature Nanotech 5, 42–47 (2010). https://doi.org/10.1038/nnano.2009.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.314

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing