Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins

Abstract

Microfabricated regular sieving structures hold great promise as an alternative to gels to improve the speed and resolution of biomolecule separation. In contrast to disordered porous gel networks, these regular structures also provide well defined environments ideal for the study of molecular dynamics in confining spaces. However, the use of regular sieving structures has, to date, been limited to the separation of long DNA molecules, however separation of smaller, physiologically relevant macromolecules, such as proteins, still remains a challenge. Here we report a microfabricated anisotropic sieving structure consisting of a two-dimensional periodic nanofluidic filter array. The designed structural anisotropy causes different-sized or -charged biomolecules to follow distinct trajectories, leading to efficient separation. Continuous-flow size-based separation of DNA and proteins, as well as electrostatic separation of proteins, was achieved, demonstrating the potential use of this device as a generic molecular sieving structure for an integrated biomolecule sample preparation and analysis system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic showing negatively charged macromolecules assuming bidirectional motion in the ANA under the influence of two orthogonal electric fields Ex and Ey.
Figure 2: Structure of the microfabricated device incorporating the ANA.
Figure 3: Ogston sieving of short DNA (the PCR marker) through the ANA.
Figure 4: Entropic trapping of long DNA (the λ DNA–Hind III digest) through the ANA.
Figure 5: Continuous-flow separation of proteins through the ANA.
Figure 6: Ogston sieving, entropic trapping and electrostatic sieving of DNA and proteins in the ANA.

Similar content being viewed by others

References

  1. Scopes, R. K. Protein Purification, Principles and Practice 3rd edn (Springer-Verlag, New York, 1993).

    Google Scholar 

  2. Giddings, J. C. Dynamics of Chromatography. Part 1. Principles and Theory (Marcel Dekker, New York, 1965).

    Google Scholar 

  3. Slater, G. W., Mayer, P. & Drouin, G. Migration of DNA through gels. Methods Enzymol. 270, 272–295 (1996).

    Article  CAS  Google Scholar 

  4. Viovy, J.-L. Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev. Mod. Phys. 72, 813–872 (2000).

    Article  CAS  Google Scholar 

  5. Woolley, A. T. & Mathies, R. A. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl Acad. Sci. USA 91, 11348–11352 (1994).

    Article  CAS  Google Scholar 

  6. Yao, G. et al. SDS capillary gel electrophoresis of proteins in microfabricated channels. Proc. Natl Acad. Sci. USA 96, 5372–5377 (1999).

    Article  CAS  Google Scholar 

  7. Callewaert, N. et al. Total serum protein N-glycome profiling on a capillary electrophoresis-microfluidics platform. Electrophoresis 25, 3128–3131 (2004).

    Article  CAS  Google Scholar 

  8. Liu, L., Li, P. & Asher, S. A. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel. Nature 397, 141–144 (1999).

    Article  CAS  Google Scholar 

  9. Nykypanchuk, D., Strey, H. H. & Hoagland, D. A. Brownian motion of DNA confined within a two-dimensional array. Science 297, 987–990 (2002).

    Article  CAS  Google Scholar 

  10. Volkmuth, W. D. & Austin, R. H. DNA electrophoresis in microlithographic arrays. Nature 358, 600–602 (1992).

    Article  CAS  Google Scholar 

  11. Turner, S. W., Perez, A. M., Lopez, A. & Craighead, H. G. Monolithic nanofluid sieving structures for DNA manipulation. J. Vac. Sci. Technol. B 16, 3835–3840 (1998).

    Article  CAS  Google Scholar 

  12. Han, J. & Craighead, H. G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    Article  CAS  Google Scholar 

  13. Huang, L. R. et al. A DNA prism: high speed continuous fractionation of large DNA molecules. Nature Biotechnol. 20, 1048–1051 (2002).

    Article  CAS  Google Scholar 

  14. Baba, M. et al. DNA size separation using artificially nanostructured matrix. Appl. Phys. Lett. 83, 1468–1470 (2003).

    Article  CAS  Google Scholar 

  15. Kaji, N. et al. Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Anal. Chem. 76, 15–22 (2004).

    Article  CAS  Google Scholar 

  16. Chou, F. et al. Sorting by diffusion: an asymmetric obstacle course for continuous molecular separation. Proc. Natl Acad. Sci. USA 96, 13762–13765 (1999).

    Article  CAS  Google Scholar 

  17. van Oudenaarden, A. & Boxer, S. G. Brownian ratchets: molecular separation in lipid bilayers supported on patterned arrays. Science 285, 1046–1048 (1999).

    Article  CAS  Google Scholar 

  18. Huang, L. R., Cox, E. C., Austin, R. H. & Sturm, J. C. Continuous particle separation through deterministic lateral displacement. Science 304, 987–990 (2004).

    Article  CAS  Google Scholar 

  19. Austin, R. H. et al. Ratchets: the problems with boundary conditions in insulating fluids. Appl. Phys. A 75, 279–284 (2002).

    Article  CAS  Google Scholar 

  20. Huang, L. R. et al. Role of molecular size in ratchet fractionation. Phys. Rev. Lett. 89, 178301 (2002).

    Article  Google Scholar 

  21. Fu, J. & Han, J. Continuous-flow biomolecule separation through patterned anisotropic nanofluidic sieving structure. Proc. Micro. Total Anal. Sys. 1, 519–521 (2006).

    Google Scholar 

  22. Ogston, A. G. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54, 1754–1757 (1958).

    Article  Google Scholar 

  23. Rodbard, D. & Chrambach, A. Unified theory for gel electrophoresis and gel filtration. Proc. Natl Acad. Sci. USA 65, 970–977 (1970).

    Article  CAS  Google Scholar 

  24. Fu, J., Mao, P. & Han, J. Nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett. 87, 263902 (2005).

    Article  Google Scholar 

  25. Muthukumar, M. & Baumgärtner, A. Effects of entropic barriers on polymer dynamics. Macromolecules 22, 1937–1941 (1989).

    Article  CAS  Google Scholar 

  26. Smisek, D. L. & Hoagland, D. A. Electrophoresis of flexible macromolecules: evidence for a new mode of transport in gels. Science 248, 1221–1223 (1990).

    Article  CAS  Google Scholar 

  27. Rousseau, J., Drouin, G. & Slater, G. W. Entropic trapping of DNA during gel electrophoresis: effect of field intensity and gel concentration. Phys. Rev. Lett. 79, 1945–1948 (1997).

    Article  CAS  Google Scholar 

  28. Han, J., Turner, S. W. & Craighead, H. G. Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys. Rev. Lett. 83, 1688–1691 (1999).

    Article  CAS  Google Scholar 

  29. Smith, F. G. & Deen, W. M. Electrostatic effects on the partitioning of spherical colloids between dilute bulk solution and cylindrical pores. J. Colloid Interface Sci. 91, 571–590 (1983).

    Article  CAS  Google Scholar 

  30. Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 1409–1425 (1987).

    Article  CAS  Google Scholar 

  31. Fu, J., Yoo, J. & Han, J. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. Phys. Rev. Lett. 97, 018103 (2006).

    Article  Google Scholar 

  32. Giddings, J. C., Kucera, E., Russell, C. P. & Myers, M. N. Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks. Exclusion chromatography. J. Phys. Chem. 72, 4397–4408 (1968).

    Article  CAS  Google Scholar 

  33. Slater, G. W., Gratton, Y., Kenward, M., McCormick, L. & Tessier, F. Deformation, stretching, and relaxation of single-polymer chains: fundamentals and examples. Soft Mater. 1, 365–391 (2003).

    Article  CAS  Google Scholar 

  34. Schoch, R. B., Bertsch, A. & Renaud, P. pH-controlled diffusion of proteins with different pI values across a nanochannel on a chip. Nano Lett. 6, 543–547 (2006).

    Article  CAS  Google Scholar 

  35. Huang, L. R. et al. Generation of large-area tunable uniform electric fields in microfluid arrays for rapid DNA separation, Tech. Dig. Int. Elect. Dev. Mtg, 363–366 (2002).

  36. Lide, D. R. CRC Handbook of Chemistry and Physics edn 87 (Taylor and Francis, Boca Raton, 2007).

    Google Scholar 

  37. Hagerman, P. J. Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17, 265–286 (1988).

    Article  CAS  Google Scholar 

  38. Rubenstein, M. & Colby, R. H. Polymer Physics (Oxford, New York, 2003).

    Google Scholar 

  39. Giddings, J. C. Unified Separation Science (Wiley, New York, 1991).

    Google Scholar 

  40. Smith, D. E., Perkins, T. T. & Chu, S. Dynamical scaling of DNA diffusion coefficients. Macromolecules 29, 1372–1373 (1996).

    Article  CAS  Google Scholar 

  41. Nakanishi, K., Sakiyama, T. & Imamura, K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng. 91, 233–244 (2001).

    Article  CAS  Google Scholar 

  42. Schoch, R. B. Transport Phenomena in Nanofluidics: From Ionic Studies to Proteomic Applications. PhD Thesis No. 3538, EPFL, Lausanne (2006).

    Google Scholar 

  43. Margolis, J. & Kenrick, K. G. Polyacrylamide gel-electrophoresis across a molecular sieve gradient. Nature 214, 1334–1336 (1967).

    Article  CAS  Google Scholar 

  44. Karnik, R., Castelino, K. & Majumdar, A. Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett. 88, 123114 (2006).

    Article  Google Scholar 

  45. Eijkel, J. C. T. & van den Berg, A. Nanotechnology for membranes, filters and sieves. Lab. Chip 6, 19–23 (2006).

    Article  CAS  Google Scholar 

  46. Wulfkuhle, J. D., Liotta, L. A. & Petricoin, E. F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 3, 267–275 (2003).

    Article  CAS  Google Scholar 

  47. Righetti, P. G., Castagna, A., Herbert, B., Reymond, F. & Rossier, J. S. Prefractionation techniques in proteome analysis. Proteomics 3, 1397–1407 (2003).

    Article  CAS  Google Scholar 

  48. Fu, J. & Han, J. Continuous biomolecule separation in a nanofilter structure. US Patent P-8195-USP, priority date 5 October 2006.

Download references

Acknowledgements

We acknowledge financial support from NIH (EB005743), the DuPont–MIT Alliance, NSF (CTS-0347348) and Singapore-MIT Alliance (SMA-II, CE Program). We thank P. Mao for helping take the scanning electron microscopy images and J. Yoo for contributing to the experimental setup. We acknowledge valuable comments on and suggestions for the manuscript by P. Doyle, H. Bow and C. Rothman. The MIT Microsystems Technology Laboratories are acknowledged for support in fabrication.

Author information

Authors and Affiliations

Authors

Contributions

J.F. and J.H. conceived and initiated the ANA concept and J.F. designed and fabricated the ANA device. J.F. conceived and performed experiments with short DNA, long DNA and denatured proteins. R.B.S. conceived and performed experiments with native proteins. J.F. and R.B.S. analysed the data. A.L.S. performed gel analysis and J.F. and J.H. developed the theoretical model. J.F. and R.B.S. wrote the manuscript and J.H. and S.R.T. supervized the project.

Corresponding authors

Correspondence to Jianping Fu, Reto B. Schoch or Jongyoon Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie S1 (WMV 2802 kb)

Supplementary Information

Supplementary movie S2 (WMV 2802 kb)

Supplementary Information

Supplementary movie S3 (WMV 1700 kb)

Supplementary Information

Supplementary text, figures S1, S2 and video captions (PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Schoch, R., Stevens, A. et al. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nature Nanotech 2, 121–128 (2007). https://doi.org/10.1038/nnano.2006.206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing