Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nerve growth cone guidance mediated by G protein–coupled receptors

Abstract

Growing axons navigate by responding to chemical guidance cues. Here we report that growth cones of rat cerebellar axons in culture turned away from a gradient of SDF-1, a chemokine that attracts migrating leukocytes and cerebellar granule cells via a G protein–coupled receptor (GPCR). Similarly, Xenopus spinal growth cones turned away from a gradient of baclofen, an agonist of the GABAB receptor. This response was mediated by Gi and subsequent activation of phospholipase C (PLC), which triggered two pathways: protein kinase C (PKC) led to repulsion, and inositol 1,4,5-triphosphate (IP3) receptor activation led to attractive turning. Under normal culture conditions, PKC-dependent repulsion dominated, but the repulsion could be converted to attraction by inhibiting PKC or by elevating cytosolic cGMP. Thus, GPCRs can mediate both repulsive and attractive axon guidance in vitro, and chemokines may serve as guidance cues for axon pathfinding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemorepulsion of growth cones induced by a gradient of SDF-1 or baclofen.
Figure 2: The modulatory role of cyclic nucleotides.
Figure 3: Ca2+ signaling in cerebellar granule neurons triggered by SDF-1.
Figure 4: Dependence of GPCR-mediated turning on PLC–PKC/IP3 signaling pathways.
Figure 5: PKC activation by SDF-1 in cultured cerebellar granule cells.
Figure 6: Gradients of drugs that activate or inhibit PKC or inhibit IP3 receptors are sufficient to induce growth cone turning.

Similar content being viewed by others

References

  1. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    CAS  PubMed  Google Scholar 

  2. Song, H.J. & Poo, M-m. Cell biology of neuronal navigation. Nat. Cell Biol. 3, 93–98 (2001).

    Article  Google Scholar 

  3. Flanagan, J.G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Mueller, B.K. Growth cone guidance: first steps towards a deeper understanding. Annu. Rev. Neurosci. 22, 351–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Raper, J.A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, T.W. & Bargmann, C.I. Dynamic regulation of axon guidance. Nat. Neurosci. 4, 1169–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, W. et al. Directional guidance of neuronal migration in the olfactory system by the secreted protein Slit. Nature 400, 331–336 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yee, K.T., Simon, H.H., Tessier-Lavigne, M. & O'Leary, D.M. Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24 607–622 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. & Littman, D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Ma, Q. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95, 9448–9453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy, P.M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12, 593–633 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Devreotes, P.N. & Zigmond, S.H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Oberlin, E. et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 833–835 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Bleul, C.C. et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Lu, Q., Sun, E., Klein, R.S. & Flanagan, J.G. Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Klein, R.S. et al. SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128, 1971–1981 (2001).

    CAS  PubMed  Google Scholar 

  18. Sotsios, Y., Whittaker, G.C., Westwick, J. & Ward, S.G. The CXC chemokine stromal cell-derived factor activates a Gi-coupled phosphoinositide 3-kinase in T lymphocytes. J. Immunol. 163, 5954–5963 (1999).

    CAS  PubMed  Google Scholar 

  19. McGrath, K.E., Koniski, A.D., Maltby, K.M., McGann, J.K. & Palis, J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol. 213, 442–456 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Igarashi, M., Strittmatter, S.M., Vartanian, T. & Fishman, M.C. Mediation by G proteins of signals that cause collapse of growth cones. Science 259, 77–79 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Song, H.-j., Ming, G.-I. & Poo, M-m. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Song, H.-j. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Hopker, V.H., Shewan, D., Tessier-Lavigne, M., Poo, M-m. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Poznansky, M.C. et al. Active movement of T cells away from a chemokine. Nat. Med. 6, 543–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Song, H. & Poo, M-m. Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9, 355–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M.M. Calcium signaling in the guidance of nerve growth by netrin-1. Nature 403, 93–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, J.Q. Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature 403, 89–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Berridge, M.J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Ming, G.l. et al. Phospholipase C-γ and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23, 139–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, F.Q. & Cohan, C.S. Growth cone collapse through coincident loss of actin bundles and leading edge actin without actin depolymerization. J. Cell Biol. 153, 1071–1083 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, J.F., Pack, I.W. & Groopman, J.E. Stromal cell-derived factor-1a stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 95, 2505–2513 (2000).

    CAS  PubMed  Google Scholar 

  32. Berridge, M.J., Downes, C.P. & Hanley, M.R. Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411–419 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Takei, K., Shin, R.M., Inoue, T., Kato, K. & Mikoshiba, K. Regulation of nerve growth mediated by inositol 1, 4,5-trisphosphate receptors in growth cones. Science 282, 1705–1708 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Meucci, O. et al. Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl. Acad. Sci. USA 95, 14500–14505 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hatten, M.E. Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Hesselgesser, J. & Horuk, R. Chemokine and chemokine receptor expression in the central nervous system. J. Neurovirol. 5, 13–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Mennicken, F., Maki, R., de Souza, E.B. & Quirion, R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol. Sci. 20, 73–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Xia, M.Q. & Hyman, B.T. Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease. J. Neurovirol. 5, 32–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Campbell, J.J. et al. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, J.Y. et al. The neuronal repellent slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410, 948–952 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakamura, F., Kalb, R.G. & Strittmatter, S.M. Molecular basis of semaphorin-mediated axon guidance. J. Neurobiol. 44, 219–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Borghesani, P.R. et al. BDNF stimulates migration of cerebellar granule cells. Development 129, 1435–1442 (2002).

    CAS  PubMed  Google Scholar 

  43. Hatten, M.E. Neuronal regulation of astroglia morphology and proliferation in vitro. J. Cell Biol. 100, 384–396 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Major State Basic Research Program of China and from the Shanghai Science and Technology Development Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumin Duan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., Li, Y., Zhang, Z. et al. Nerve growth cone guidance mediated by G protein–coupled receptors. Nat Neurosci 5, 843–848 (2002). https://doi.org/10.1038/nn899

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn899

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing