Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels

Abstract

The molecular organization of presynaptic active zones is important for the neurotransmitter release that is triggered by depolarization-induced Ca2+ influx. Here, we demonstrate a previously unknown interaction between two components of the presynaptic active zone, RIM1 and voltage-dependent Ca2+ channels (VDCCs), that controls neurotransmitter release in mammalian neurons. RIM1 associated with VDCC β-subunits via its C terminus to markedly suppress voltage-dependent inactivation among different neuronal VDCCs. Consistently, in pheochromocytoma neuroendocrine PC12 cells, acetylcholine release was significantly potentiated by the full-length and C-terminal RIM1 constructs, but membrane docking of vesicles was enhanced only by the full-length RIM1. The β construct beta-AID dominant negative, which disrupts the RIM1-β association, accelerated the inactivation of native VDCC currents, suppressed vesicle docking and acetylcholine release in PC12 cells, and inhibited glutamate release in cultured cerebellar neurons. Thus, RIM1 association with β in the presynaptic active zone supports release via two distinct mechanisms: sustaining Ca2+ influx through inhibition of channel inactivation, and anchoring neurotransmitter-containing vesicles in the vicinity of VDCCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct interaction of RIM1 with the VDCC β4b subunit.
Figure 2: Association of RIM1 with native neuronal VDCC complexes.
Figure 3: RIM1 clusters with the VDCC subunits near presynaptic termini in cultured hippocampal neurons.
Figure 4: Effects of RIM1 on the inactivation properties of recombinant neuronal VDCCs.
Figure 5: Physiological relevance of RIM1 effects on inactivation properties of VDCCs.
Figure 6: Effects of RIM1 on the activation properties of VDCCs.
Figure 7: RIM1 and β subunits associate to anchor neurotransmitter vesicles to VDCCs at the plasma membrane.
Figure 8: The RIM1-β association enhances neurotransmitter release in PC12 cells and cultured cerebellar neurons.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Zhai, R.G. & Bellen, H.J. The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19, 262–270 (2004).

    Google Scholar 

  2. Atwood, H.L. Gatekeeper at the synapse. Science 312, 1008–1009 (2006).

    Article  CAS  Google Scholar 

  3. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  4. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Südhof, T.C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593–598 (1997).

    Article  CAS  Google Scholar 

  5. Wang, Y. & Südhof, T.C. Genomic definition of RIM proteins: evolutionary amplification of a family of synaptic regulatory proteins. Genomics 81, 126–137 (2003).

    Article  CAS  Google Scholar 

  6. Wang, Y., Sugita, S. & Südhof, T.C. The RIM/NIM family of neuronal C2 domain proteins. J. Biol. Chem. 275, 20033–20044 (2000).

    Article  CAS  Google Scholar 

  7. Betz, A. et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30, 183–196 (2001).

    Article  CAS  Google Scholar 

  8. Ohtsuka, T. et al. CAST: a novel protein of the cytomatrix at the active zone of synapses that forms a tenary complex with RIM1 and Munc13-1. J. Cell Biol. 158, 577–590 (2002).

    Article  CAS  Google Scholar 

  9. Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).

    Article  CAS  Google Scholar 

  10. Coppola, T. et al. Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J. Biol. Chem. 276, 32756–32762 (2001).

    Article  CAS  Google Scholar 

  11. Castillo, P.E., Schoch, S., Schmitz, F., Südhof, T.C. & Malenka, R.C. RIM1α is required for presynaptic long-term potentiation. Nature 415, 327–330 (2002).

    Article  CAS  Google Scholar 

  12. Calakos, N., Schoch, S., Südhof, T.C. & Malenka, R.C. Multiple roles for the active zone protein RIM1α in late stages of neurotransmitter release. Neuron 42, 889–896 (2004).

    Article  CAS  Google Scholar 

  13. Tsien, R.W., Ellinor, P.T. & Horne, W.A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol. Sci. 12, 349–354 (1991).

    Article  CAS  Google Scholar 

  14. Takahashi, T. & Momiyama, A. Different types of calcium channels mediate central synaptic transmission. Nature 366, 156–158 (1993).

    Article  CAS  Google Scholar 

  15. Wheeler, D.B., Randell, A. & Tsien, R.W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264, 107–111 (1994).

    Article  CAS  Google Scholar 

  16. Catterall, W.A. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24, 307–323 (1998).

    Article  CAS  Google Scholar 

  17. Ertel, E.A. et al. Nomenclature of voltage-gated calcium channels. Neuron 25, 533–535 (2000).

    Article  CAS  Google Scholar 

  18. Sheng, Z-H., Rettig, J., Takahashi, M. & Catterall, W.A. Identification of a syntaxin-binding site of N-type calcium channels. Neuron 13, 1303–1313 (1994).

    Article  CAS  Google Scholar 

  19. Bezprozvanny, I., Scheller, R.H. & Tsien, R.W. Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378, 623–626 (1995).

    Article  CAS  Google Scholar 

  20. Zhong, H., Yokoyama, C.T., Scheuer, T. & Catterall, W.A. Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat. Neurosci. 2, 939–941 (1999).

    Article  CAS  Google Scholar 

  21. Spafford, J.D. & Zamponi, G.W. Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Curr. Opin. Neurobiol. 13, 308–314 (2003).

    Article  CAS  Google Scholar 

  22. Maximov, A., Südhof, T.C. & Bezprozvanny, I. Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453–24456 (1999).

    Article  CAS  Google Scholar 

  23. Maximov, A. & Bezprozvany, I. Synaptic targeting of N-type calcium channels in hippocampal neurons. J. Neurosci. 22, 6939–6952 (2002).

    Article  CAS  Google Scholar 

  24. Nishimune, H., Sanes, J.R. & Carlson, S.S. A synaptic laminin–calcium channel interaction organizes active zones in motor nerve terminals. Nature 432, 580–587 (2004).

    Article  CAS  Google Scholar 

  25. Kang, M.G. et al. A functional AMPA receptor–calcium channel complex in the postsynaptic membrane. Proc. Natl. Acad. Sci. USA 103, 5561–5566 (2006).

    Article  CAS  Google Scholar 

  26. Mori, Y. et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398–402 (1991).

    Article  CAS  Google Scholar 

  27. Bichet, D. et al. The I–II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit. Neuron 25, 177–190 (2000).

    Article  CAS  Google Scholar 

  28. Varadi, G., Lory, P., Schultz, D., Varadi, M. & Schwartz, A. Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel. Nature 352, 159–162 (1991).

    Article  CAS  Google Scholar 

  29. Béguin, P. et al. Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 411, 701–706 (2001).

    Article  Google Scholar 

  30. Hibino, H. et al. Direct interaction with a nuclear protein and regulation of gene silencing by a variant of the Ca2+ channel β4 subunit. Proc. Natl. Acad. Sci. USA 100, 307–312 (2003).

    Article  CAS  Google Scholar 

  31. Vendel, A.C. et al. Alternative splicing of the voltage-gated Ca2+ channel β4 subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. J. Neurosci. 26, 2635–2644 (2006).

    Article  CAS  Google Scholar 

  32. Burgess, D.L. et al. β subunit reshuffling modifies N- and P/Q-type Ca2+ channel subunit compositions in lethargic mouse brain. Mol. Cell. Neurosci. 13, 293–311 (1999).

    Article  CAS  Google Scholar 

  33. Opatowsky, Y., Chen, C.C., Campbell, K.P. & Hirsch, J.A. Structural analysis of the voltage-dependent calcium channel β–subunit functional core and its complex with the α1 interaction domain. Neuron 42, 387–399 (2004).

    Article  CAS  Google Scholar 

  34. Khanna, R., Li, Q., Sun, L., Collins, T.J. & Stanley, E.F. N-type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face, but are components of independent protein complexes. Neuroscience 140, 1201–1208 (2006).

    Article  CAS  Google Scholar 

  35. Plummer, M.R., Logothetis, D.E. & Hess, P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2, 1453–1463 (1989).

    Article  CAS  Google Scholar 

  36. Patil, P.G., Brody, D.L. & Yue, D.T. Preferential closed-state inactivation of neuronal calcium channels. Neuron 20, 1027–1038 (1998).

    Article  CAS  Google Scholar 

  37. De Waard, M., Pragnell, M. & Campbell, K.P. Ca2+ channel regulation by a conserved β-subunit domain. Neuron 13, 495–503 (1994).

    Article  CAS  Google Scholar 

  38. DeMaria, C.D., Soong, T.W., Alseikhan, B.A., Alvania, R.S. & Yue, D.T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411, 484–489 (2001).

    Article  CAS  Google Scholar 

  39. Stanley, E.F. Syntaxin I modulation of presynaptic calcium channel inactivation revealed by botulinum toxin C1. Eur. J. Neurosci. 17, 1303–1305 (2003).

    Article  Google Scholar 

  40. Dulubova, I. et al. A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J. 24, 2839–2850 (2005).

    Article  CAS  Google Scholar 

  41. Liu, H. et al. Expression and subunit interaction of voltage-dependent Ca2+ channels in PC12 cells. J. Neurosci. 16, 7557–7565 (1996).

    Article  CAS  Google Scholar 

  42. Nishiki, T. et al. Comparison of exocytotic mechanisms between acetylcholine- and catecholamine-containing vesicles in rat pheochromocytoma cells. Biochem. Biophys. Res. Commun. 239, 57–62 (1997).

    Article  CAS  Google Scholar 

  43. Zhang, J.F., Ellinor, P.T., Aldrich, R.W. & Tsien, R.W. Molecular determinants of voltage-dependent inactivation in calcium channels. Nature 372, 97–100 (1994).

    Article  CAS  Google Scholar 

  44. Stotz, S.C., Hamid, J., Spaetgens, R.L., Jarvis, S.E. & Zamponi, G.W. Fast inactivation of voltage-dependent calcium channels. J. Biol. Chem. 275, 24575–24582 (2000).

    Article  CAS  Google Scholar 

  45. Geib, S. et al. The interaction between the I–II loop and the III–IV loop of Cav2.1 contributes to voltage-dependent inactivation in a β-dependent manner. J. Biol. Chem. 277, 10003–10013 (2002).

    Article  CAS  Google Scholar 

  46. Weimer, R.M. et al. UNC-13 and UNC-10/Rim localize synaptic vesicles to specific membrane domains. J. Neurosci. 26, 8040–8047 (2006).

    Article  CAS  Google Scholar 

  47. Schoch, S. et al. Redundant functions of RIM1α and RIM2α in Ca2+-triggered neurotransmitter release. EMBO J. 25, 5852–5863 (2006).

    Article  CAS  Google Scholar 

  48. Hibino, H. et al. RIM-binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34, 411–423 (2002).

    Article  CAS  Google Scholar 

  49. Koushika, S.P. et al. A post-docking role for active zone protein Rim. Nat. Neurosci. 4, 997–1005 (2001).

    Article  CAS  Google Scholar 

  50. Nonaka, M., Doi, T., Fujiyoshi, Y., Takemoto-Kimura, S. & Bito, H. Essential contribution of the ligand-binding βB/βC loop of PDZ1 and PDZ2 in the regulation of postsynaptic clustering, scaffolding and localization of postsynaptic density–95. J. Neurosci. 26, 763–774 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Miyawaki for NPY-Venus, R.Y. Tsien for mCherry, S. Ozawa for pSinEGdsp vector, H. Hibino, H Atomi and H. Okuno for helpful discussions, K. Yamazaki, K. Ueda, N. Yokoi and Y. Honjo for expert experiments and K. Sugimoto and T. Morii for molecular modeling. This study was supported by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Japan Society for the Promotion of Science and the Human Frontier Science Program. K.P.C. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

S.K., M.W., T.M. and Y.U. contributed to the acquisition, analysis and interpretation of data, and drafting of the manuscript. H.B., A.M.B., M.T. and K.P.C. contributed to the analysis and interpretation of data, and drafting of the manuscript. E.M., Y.H., M.N., M.D.W., M.K. and M.I. contributed to the acquisition, analysis and interpretation of data. Y.M. contributed to the analysis and interpretation of data, and drafting and critical review of the manuscript.

Corresponding author

Correspondence to Yasuo Mori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Recombinant constructs of GST fusion RIM1 subfragments. (PDF 43 kb)

Supplementary Fig. 2

In vitro binding of the purified RIM1 GST fusion and recombinant β4 proteins. (PDF 65 kb)

Supplementary Fig. 3

Molecular modeling and functional characterization of BADN as a dominant-negative mutant for RIM1 function. (PDF 115 kb)

Supplementary Fig. 4

Confocal images of RIM1 and β4 colocalization mediated by Cav2.1 α-subunit proteins at the plasma membrane. (PDF 147 kb)

Supplementary Fig. 5

Disruption of the RIM1 effects on VDCC inactivation by the β4 GK domain and BADN. (PDF 84 kb)

Supplementary Fig. 6

Effects of RIM1 on the activation properties of VDCCs. (PDF 74 kb)

Supplementary Fig. 7

Molecular and physiological characterization of PC12 cells. (PDF 101 kb)

Supplementary Fig. 8

A model detailing the putative role of the β-subunit–RIM1 interaction at presynaptic active zones. (PDF 126 kb)

Supplementary Table 1

Effects of RIM1 constructs on current density, activation and inactivation of Cav2.1, Cav2.2, Cav2.3 or Cav1.2 channel in BHK cells expressing α2/δ and β4b. (PDF 53 kb)

Supplementary Table 2

Effects of RIM1 constructs on current density, activation and inactivation of Cav2.1 channel in BHK cells expressing α2/δ and various β-subunits. (PDF 61 kb)

Supplementary Table 3

Effects of RIM1 or C-terminal truncated mutants of RIM1 on inactivation of Cav2.1 channel in BHK cells expressing α2/δ and β1a. (PDF 51 kb)

Supplementary Table 4

Effects of RIM1 on inactivation of Cav2.2 channel in BHK cells expressing α2/δ and β4-GK. (PDF 49 kb)

Supplementary Table 5

Effects of RIM1 or BADN on inactivation of Cav2.1 channel in BHK cells expressing α2/δ and β1a. (PDF 50 kb)

Supplementary Table 6

Effects of RIM1 on inactivation of Cav2.1 channel in HEK cells expressing α2/δ and β1. (PDF 54 kb)

Supplementary Table 7

Effects of RIM1 or BADN on inactivation of VDCCs in PC12 cells. (PDF 54 kb)

Supplementary Table 8

Buffer solutions for biochemistry. (PDF 43 kb)

Supplementary Table 9

Antisense and sense PCR primers. (PDF 50 kb)

Supplementary Methods (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyonaka, S., Wakamori, M., Miki, T. et al. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 10, 691–701 (2007). https://doi.org/10.1038/nn1904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing