Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Changes in synaptic structure underlie the developmental speeding of AMPA receptor–mediated EPSCs

Abstract

At many excitatory and inhibitory synapses throughout the nervous system, postsynaptic currents become faster as the synapse matures, primarily owing to changes in receptor subunit composition. The origin of the developmental acceleration of AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents (EPSCs) remains elusive. We used patch-clamp recordings, electron microscopic immunogold localization of AMPARs, partial three-dimensional reconstruction of the neuropil and numerical simulations of glutamate diffusion and AMPAR activation to examine the factors underlying the developmental speeding of miniature EPSCs in mouse cerebellar granule cells. We found that the main developmental change that permits submillisecond transmission at mature synapses is an alteration in the glutamate concentration waveform as experienced by AMPARs. This can be accounted for by changes in the synaptic structure and surrounding neuropil, rather than by a change in AMPAR properties. Our findings raise the possibility that structural alterations could be a general mechanism underlying the change in the time course of AMPAR-mediated synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental speeding of the AMPAR-mEPSC at 23 °C and 37 °C.
Figure 2: Voltage dependence of the AMPAR-mediated mEPSC.
Figure 3: Mean single-channel conductance of AMPARs underlying mEPSCs remains constant between P8 and P40.
Figure 4: Cyclothiazide (CTZ) slows the mEPSC decay equally at P8 and P40.
Figure 5: A low-affinity competitive antagonist preferentially accelerates P8 EPSCs.
Figure 6: Electron micrographs showing the differences in AMPA receptor content of mossy fiber–granule cell synapses in P8 and P40 mice.
Figure 7: Analysis by electron microscopy of the cerebellar glomeruli in P8 and P40 mice.
Figure 8: Influence of developmental changes in glomerular structure on simulated EPSCs.

Similar content being viewed by others

References

  1. Mishina, M. et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411 (1986).

    Article  CAS  Google Scholar 

  2. Takahashi, T., Momiyama, A., Hirai, K., Hishinuma, F. & Akagi, H. Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9, 1155–1161 (1992).

    Article  CAS  Google Scholar 

  3. Tia, S., Wang, J.F., Kotchabhakdi, N. & Vicini, S. Developmental changes of inhibitory synaptic currents in cerebellar granule neurons: role of GABAA receptor alpha 6 subunit. J. Neurosci. 16, 3630–3640 (1996).

    Article  CAS  Google Scholar 

  4. Hestrin, S. Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 357, 686–689 (1992).

    Article  CAS  Google Scholar 

  5. Bellingham, M.C., Lim, R. & Walmsley, B. Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J. Physiol. (Lond.) 511, 861–869 (1998).

    Article  CAS  Google Scholar 

  6. Taschenberger, H. & von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Wall, M.J., Robert, A., Howe, J.R. & Usowicz, M.M. The speeding of EPSC kinetics during maturation of a central synapse. Eur. J. Neurosci. 15, 785–797 (2002).

    Article  Google Scholar 

  8. London, M., Schreibman, A., Hausser, M., Larkum, M.E. & Segev, I. The information efficacy of a synapse. Nat. Neurosci. 5, 332–340 (2002).

    Article  CAS  Google Scholar 

  9. Lawrence, J.J. & Trussell, L.O. Long-term specification of AMPA receptor properties after synapse formation. J. Neurosci. 20, 4864–4870 (2000).

    Article  CAS  Google Scholar 

  10. Kumar, S.S., Bacci, A., Kharazia, V. & Huguenard, J.R. A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J. Neurosci. 22, 3005–3015 (2002).

    Article  CAS  Google Scholar 

  11. Liu, S.Q. & Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  Google Scholar 

  12. Benke, T.A., Luthi, A., Isaac, J.T. & Collingridge, G.L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998).

    Article  CAS  Google Scholar 

  13. Jonas, P. The time course of signaling at central glutamatergic synapses. News Physiol. Sci. 15, 83–89 (2000).

    CAS  Google Scholar 

  14. Cathala, L., Brickley, S., Cull-Candy, S. & Farrant, M. Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. J. Neurosci. 23, 6074–6085 (2003).

    Article  CAS  Google Scholar 

  15. Monyer, H., Seeburg, P.H. & Wisden, W. Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6, 799–810 (1991).

    Article  CAS  Google Scholar 

  16. Mosbacher, J. et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266, 1059–1062 (1994).

    Article  CAS  Google Scholar 

  17. Silver, R.A., Cull-Candy, S.G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–250 (1996).

    Article  CAS  Google Scholar 

  18. DiGregorio, D.A., Nusser, Z. & Silver, R.A. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533 (2002).

    Article  CAS  Google Scholar 

  19. Xu-Friedman, M.A., Harris, K.M. & Regehr, W.G. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6672 (2001).

    Article  CAS  Google Scholar 

  20. Silver, R.A., Colquhoun, D., Cull-Candy, S.G. & Edmonds, B. Deactivation and desensitization of non-NMDA receptors in patches and the time course of EPSCs in rat cerebellar granule cells. J. Physiol. (Lond.) 493, 167–173 (1996).

    Article  CAS  Google Scholar 

  21. Smith, T.C., Wang, L.Y. & Howe, J.R. Heterogeneous conductance levels of native AMPA receptors. J. Neurosci. 20, 2073–2085 (2000).

    Article  CAS  Google Scholar 

  22. Swanson, G.T., Kamboj, S.K. & Cull-Candy, S.G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Article  CAS  Google Scholar 

  23. Otis, T.S., Wu, Y.C. & Trussell, L.O. Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J. Neurosci. 16, 1634–1644 (1996).

    Article  CAS  Google Scholar 

  24. Mansour, M., Nagarajan, N., Nehring, R.B., Clements, J.D. & Rosenmund, C. Heteromeric AMPA receptors assemble with a preferred subunit stoichiometry and spatial arrangement. Neuron 32, 841–853 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Brorson, J.R., Li, D. & Suzuki, T. Selective expression of heteromeric AMPA receptors driven by flip-flop differences. J. Neurosci. 24, 3461–3470 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Koike, M., Tsukada, S., Tsuzuki, K., Kijima, H. & Ozawa, S. Regulation of kinetic properties of GluR2 AMPA receptor channels by alternative splicing. J. Neurosci. 20, 2166–2174 (2000).

    Article  CAS  Google Scholar 

  27. Partin, K.M., Patneau, D.K. & Mayer, M.L. Cyclothiazide differentially modulates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol. Pharmacol. 46, 129–138 (1994).

    CAS  Google Scholar 

  28. Diamond, J.S. & Jahr, C.E. Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC. Neuron 15, 1097–1107 (1995).

    Article  CAS  Google Scholar 

  29. Diamond, J.S. & Jahr, C.E. Transporters buffer synaptically released glutamate on a submillisecond time scale. J. Neurosci. 17, 4672–4687 (1997).

    Article  CAS  Google Scholar 

  30. Yamashita, T., Ishikawa, T. & Takahashi, T. Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of held synapse. J. Neurosci. 23, 3633–3638 (2003).

    Article  CAS  Google Scholar 

  31. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    Article  CAS  Google Scholar 

  32. Tanaka, J. et al. Number and density of AMPA receptors in single synapses in immature cerebellum. J. Neurosci. 25, 799–807 (2005).

    Article  CAS  Google Scholar 

  33. Hamori, J. & Somogyi, J. Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J. Comp. Neurol. 220, 365–377 (1983).

    Article  CAS  Google Scholar 

  34. Jakab, R.L. & Hamori, J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. (Berl.) 179, 81–88 (1988).

    Article  CAS  Google Scholar 

  35. Nielsen, T.A., DiGregorio, D.A. & Silver, R.A. Modulation of glutamate mobility reveals the mechanism underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic cleft. Neuron 42, 757–771 (2004).

    Article  CAS  Google Scholar 

  36. Hausser, M. & Roth, A. Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J. Physiol. (Lond.) 501, 77–95 (1997).

    Article  Google Scholar 

  37. Franks, K.M., Bartol, T.M., Jr . & Sejnowski, T.J. A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys. J. 83, 2333–2348 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Rusakov, D.A. The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca2+ depletion. Biophys. J. 81, 1947–1959 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Barbour, B. An evaluation of synapse independence. J. Neurosci. 21, 7969–7984 (2001).

    Article  CAS  Google Scholar 

  40. Xu-Friedman, M.A. & Regehr, W.G. Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J. Neurosci. 23, 2182–2192 (2003).

    Article  CAS  Google Scholar 

  41. Partin, K.M., Fleck, M.W. & Mayer, M.L. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J. Neurosci. 16, 6634–6647 (1996).

    Article  CAS  Google Scholar 

  42. Raman, I.M. & Trussell, L.O. The mechanism of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor desensitization after removal of glutamate. Biophys. J. 68, 137–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Saftenku, E.E. Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus. J. Theor. Biol. 234, 363–382 (2005).

    Article  CAS  Google Scholar 

  44. Renger, J.J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29, 469–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Murphy, T.H. et al. Differential regulation of calcium/calmodulin-dependent protein kinase II and p42 MAP kinase activity by synaptic transmission. J. Neurosci. 14, 1320–1331 (1994).

    Article  CAS  Google Scholar 

  46. McKinney, R.A., Capogna, M., Durr, R., Gahwiler, B.H. & Thompson, S.M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    Article  CAS  Google Scholar 

  47. Walmsley, B., Alvarez, F.J. & Fyffe, R.E. Diversity of structure and function at mammalian central synapses. Trends Neurosci. 21, 81–88 (1998).

    Article  CAS  Google Scholar 

  48. Koike-Tani, M., Saitoh, N. & Takahashi, T. Mechanisms underlying developmental speeding in AMPA-EPSC decay time at the calyx of Held. J. Neurosci. 25, 199–207 (2005).

    Article  CAS  Google Scholar 

  49. Taschenberger, H., Leao, R.M., Rowland, K.C., Spirou, G.A. & von Gersdorff, H. Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36, 1127–1143 (2002).

    Article  CAS  Google Scholar 

  50. Segal, M. Dendritic spines and long-term plasticity. Nat. Rev. Neurosci. 6, 277–284 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust Programme Grant (S.G.C.-C.), a Wellcome Trust Travelling Fellowship (L.C.) and the Centre National de la Recherche Scientifique (L.C. and D.A.D.). S.G.C.-C. holds a Royal Society-Wolfson Award. Z.N. acknowledges receipt of a Wellcome Trust International Senior Research Fellowship, an International Scholarship from Howard Hughes Medical Institute and a Postdoctoral Fellowship from the Boehringer Ingelheim Fund. We thank E. Molnár for providing the anti-pan-AMPA antibody and M. Köllö for his help with the 3D reconstruction. We thank T. Nielsen and J. Rothman for provision of software, S. Brickley, M. Farrant, V. Nägerl and A. Silver for helpful discussions, and B. Barbour, P. DiGregorio, M. Farrant, A. Marty, T. Nielsen, A. Silver and A. Roth for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart G Cull-Candy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cathala, L., Holderith, N., Nusser, Z. et al. Changes in synaptic structure underlie the developmental speeding of AMPA receptor–mediated EPSCs. Nat Neurosci 8, 1310–1318 (2005). https://doi.org/10.1038/nn1534

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing