Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast delayed rectifier potassium current is required for circadian neural activity

Abstract

In mammals, the precise circadian timing of many biological processes depends on the generation of oscillations in neural activity of pacemaker cells in the suprachiasmatic nucleus (SCN). The ionic mechanisms that underlie these rhythms are largely unknown. Using the mouse brain slice preparation, we show that the magnitude of fast delayed rectifier (FDR) potassium currents has a diurnal rhythm that peaks during the day. Notably, this rhythm continues in constant darkness, providing the first demonstration of the circadian regulation of an intrinsic voltage-gated current in mammalian cells. Blocking this current prevented the daily rhythm in firing rate in SCN neurons. Kv3.1b and Kv3.2 potassium channels were widely distributed within the SCN, with higher expression during the day. We conclude that the FDR is necessary for the circadian modulation of electrical activity in SCN neurons and represents an important part of the ionic basis for the generation of rhythmic output.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of SDR K+ currents in SCN neurons.
Figure 2: Characterization of FDR K+ currents in SCN neurons.
Figure 3: Current-voltage relationship of delayed rectifier K+ currents in the mouse dSCN.
Figure 4: Photomicrographs showing immunoreactivity for Kv3.1b and Kv3.2 in the SCN during the day and night.
Figure 5: Blocking FDR currents significantly reduces the firing rate of SCN neurons.
Figure 6: Acutely blocking the FDR current causes significant reduction in firing rate of SCN neurons during the day.
Figure 7: The daily rhythm in the SFR is lost when the FDR current is blocked.

Similar content being viewed by others

References

  1. van Esseveldt, K.E., Lehman, M.N. & Boer, G.J. The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res. Brain Res. Rev. 33, 34–77 (2000).

    Article  CAS  Google Scholar 

  2. Gillette, M.U. Cellular and biochemical mechanisms underlying circadian rhythms in vertebrates. Curr. Opin. Neurobiol. 7, 797–804 (1997).

    Article  CAS  Google Scholar 

  3. King, D.P. & Takahashi, J.S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 23, 713–742 (2000).

    Article  CAS  Google Scholar 

  4. Reppert, S.M. & Weaver, D.R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676 (2001).

    Article  CAS  Google Scholar 

  5. Nitabach, M.N., Blau, J. & Holmes, T.C. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109, 485–495 (2002).

    Article  CAS  Google Scholar 

  6. Harmar, A.J. et al. The VPAC2 Receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508 (2002).

    Article  CAS  Google Scholar 

  7. Schaap, J., Pennartz, C.M. & Meijer, J.H. Electrophysiology of the circadian pacemaker in mammals. Chronobiol. Int. 20, 171–188 (2003).

    Article  Google Scholar 

  8. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, USA, 2001).

    Google Scholar 

  9. Bouskila, Y. & Dudek, F.E. A rapidly activating type of outward rectifier K+ current and A-current in rat suprachiasmatic nucleus neurones. J. Physiol. (Lond.) 488, 339–350 (1995).

    Article  CAS  Google Scholar 

  10. De Jeu, M., Geurtsen, A. & Pennartz, C.M.A. Ba2+-sensitive K+ current contributes to the resting membrane potential of neurons in rat suprachiasmatic nucleus. J. Neurophysiol. 88, 869–878 (2002).

    Article  CAS  Google Scholar 

  11. Cloues, R.K. & Sather, W.A. Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J. Neurosci. 23, 1593–1604 (2003).

    Article  CAS  Google Scholar 

  12. Teshima, K., Kim, S.H. & Allen, C.N. Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons. Neuroscience 120, 65–73 (2003).

    Article  CAS  Google Scholar 

  13. Michel, S., Geusz, M.E., Zaritsky, J.J. & Block, G.D. Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259, 239–241 (1993).

    Article  CAS  Google Scholar 

  14. Michel, S., Manivannan, K., Zaritsky, J.J. & Block, G.D. A delayed rectifier current is modulated by the circadian pacemaker in Bulla. J. Biol. Rhythms 14, 141–150 (1999).

    Article  CAS  Google Scholar 

  15. Rudy, B. & McBain, C.J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci. 24, 517–526 (2001).

    Article  CAS  Google Scholar 

  16. Baranauskas, G., Tkatch, T., Nagata, K., Yeh, J.Z. & Surmeier, D.J. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat. Neurosci. 6, 258–266 (2003).

    Article  CAS  Google Scholar 

  17. Itri, J. & Colwell, C.S. Regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus. J. Neurophysiol. 90, 1589–1597 (2003).

    Article  CAS  Google Scholar 

  18. Hamada, T., Antle, M.C. & Silver, R. Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. Eur. J. Neurosci. 19, 1741–1748 (2004).

    Article  Google Scholar 

  19. Yamaguchi, S. et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408–1412 (2003).

    Article  CAS  Google Scholar 

  20. Wang, L.Y., Gan, L., Forsythe, I.D. & Kaczmarek, L.K. Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J. Physiol. (Lond.) 509, 183–194 (1998).

    Article  CAS  Google Scholar 

  21. Martina, M., Schultz, J.H., Ehmke, H., Monyer, H. & Jonas, P. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J. Neurosci. 18, 8111–8125 (1998).

    Article  CAS  Google Scholar 

  22. Kirsch, G.E. & Drewe, J.A. Gating-dependent mechanism of 4-aminopyridine block in two related potassium channels. J. Gen. Physiol. 102, 797–816 (1993).

    Article  CAS  Google Scholar 

  23. Schaap, J. et al. Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording. Brain Res. 815, 154–166 (1999).

    Article  CAS  Google Scholar 

  24. Pennartz, C.M., Bierlaagh, M.A. & Geurtsen, A.M. Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current. J. Neurophysiol. 78, 1811–1825 (1997).

    Article  CAS  Google Scholar 

  25. Kononenko, N.I., Shao, L.R. & Dudek, F.E. Riluzole-sensitive slowly inactivating sodium current in rat suprachiasmatic nucleus neurons. J. Neurophysiol. 91, 710–718 (2004).

    Article  CAS  Google Scholar 

  26. Pennartz, C.M., de Jeu, M.T., Bos, N.P., Schaap, J. & Geurtsen, A.M. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416, 286–290 (2002).

    Article  CAS  Google Scholar 

  27. Jiang, Z.G., Yang, Y., Liu, Z.P. & Allen, C.N. Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. J. Physiol. (Lond.) 499, 141–159 (1997).

    Article  CAS  Google Scholar 

  28. Kuhlman, S.J. & McMahon, D.G. Rhythmic regulation of membrane potential and potassium current persists in SCN neurons in the absence of environmental input. Eur. J. Neurosci. 20, 1113–1117 (2004).

    Article  Google Scholar 

  29. de Jeu, M.T. & Pennartz, C.M. Functional characterization of the H-current in SCN neurons in subjective day and night: a whole-cell patch-clamp study in acutely prepared brain slices. Brain Res. 767, 72–80 (1997).

    Article  CAS  Google Scholar 

  30. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  Google Scholar 

  31. Gan, L. & Kaczmarek, L.K. When, where, and how much? Expression of the Kv3.1 potassium channel in high-frequency firing neurons. J. Neurobiol. 37, 69–79 (1998).

    Article  CAS  Google Scholar 

  32. Obrietan, K., Impey, S., Smith, D., Athos, J. & Storm, D.R. Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J. Biol. Chem. 274, 17748–17756 (1999).

    Article  CAS  Google Scholar 

  33. McDonald, M.J. & Rosbash, M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578 (2001).

    Article  CAS  Google Scholar 

  34. Ceriani, M.F. et al. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J. Neurosci. 22, 9305–9319 (2002).

    Article  CAS  Google Scholar 

  35. Yamashita, T. et al. Circadian variation of cardiac K+ channel gene expression. Circulation 107, 1917–1922 (2003).

    Article  Google Scholar 

  36. Ko, G.Y., Ko, M.L. & Dryer, S.E. Circadian regulation of cGMP-gated channels of vertebrate cone photoreceptors: role of cAMP and Ras. J. Neurosci. 24, 1296–1304 (2004).

    Article  CAS  Google Scholar 

  37. Reppert, S.M. & Weaver, D.R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  Google Scholar 

  38. Meijer, J.H., Schaap, J., Watanabe, K. & Albus, H. Multiunit activity recordings in the suprachiasmatic nuclei: in vivo versus in vitro models. Brain Res. 753, 322–327 (1997).

    Article  CAS  Google Scholar 

  39. Schaap, J. et al. Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. Proc. Natl. Acad. Sci. USA 100, 15994–15999 (2003).

    Article  CAS  Google Scholar 

  40. Michel, S., Itri, J. & Colwell, C.S. Excitatory mechanisms in the suprachiasmatic nucleus: the role of AMPA/KA glutamate receptors. J. Neurophysiol. 88, 817–828 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Duindam for technical assistance. We would also like to thank E. Herzog and N. Wayne for comments on a draft of the manuscript. Supported by National Institutes of Health grants HL64582, NS043169 and MH68087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S Colwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itri, J., Michel, S., Vansteensel, M. et al. Fast delayed rectifier potassium current is required for circadian neural activity. Nat Neurosci 8, 650–656 (2005). https://doi.org/10.1038/nn1448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing