Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gβγ acts at the C terminus of SNAP-25 to mediate presynaptic inhibition

Abstract

Presynaptic inhibition mediated by G protein–coupled receptors may involve a direct interaction between G proteins and the vesicle fusion machinery. The molecular target of this pathway is unknown. We demonstrate that Gβγ-mediated presynaptic inhibition in lamprey central synapses occurs downstream from voltage-gated Ca2+ channels. Using presynaptic microinjections of botulinum toxins (BoNTs) during paired recordings, we find that cleavage of synaptobrevin in unprimed vesicles leads to an eventual exhaustion of synaptic transmission but does not prevent Gβγ-mediated inhibition. In contrast, cleavage of the C-terminal nine amino acids of the 25 kDa synaptosome-associated protein (SNAP-25) by BoNT A prevents Gβγ-mediated inhibition. Moreover, a peptide containing the region of SNAP-25 cleaved by BoNT A blocks the Gβγ inhibitory effect. Finally, removal of the last nine amino acids of the C-terminus of SNAP-25 weakens Gβγ interactions with soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes. Thus, the C terminus of SNAP-25, which links synaptotagmin I to the SNARE complex, may represent a target of Gβγ for presynaptic inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 5-HT inhibits synaptic release of glutamate at the giant synapse.
Figure 2: 5-HT acts downstream of voltage-gated Ca2+ channels.
Figure 3: The effect of presynaptically applied BoNT B in the giant synapse.
Figure 4: BoNT B does not prevent 5-HT–mediated inhibition.
Figure 5: The effect of 5-HT is rapid.
Figure 6: 5-HT fails to inhibit BoNT A–altered synaptic release.
Figure 7: Presynaptic microinjection of a ct-SNAP-25 (the last 14 amino acids of the C-terminus of SNAP-25) selectively blocks 5-HT–mediated inhibition.
Figure 8: Gβγ binding to ternary SNARE containing SNAP-251–197 is weakened.

Similar content being viewed by others

References

  1. Holz, G.G., 4th., Kream, R.M., Spiegel, A. & Dunlap, K. G proteins couple α-adrenergic and GABAb receptors to inhibition of peptide secretion from peripheral sensory neurons. J. Neurosci. 9, 657–666 (1989).

    Article  CAS  Google Scholar 

  2. Dolphin, A.C. et al. G protein modulation of voltage-dependent calcium channels and transmitter release. Biochem. Soc. Trans. 21, 391–395 (1993).

    Article  CAS  Google Scholar 

  3. De Waard, M. et al. Direct binding of G-protein βγ complex to voltage-dependent calcium channels. Nature 385, 446–450 (1997).

    Article  CAS  Google Scholar 

  4. Qin, N., Platano, D., Olcese, R., Stefani, E. & Birnbaumer, L. Direct interaction of gβγ with a C-terminal gβγ-binding domain of the Ca2+ channel α1 subunit is responsible for channel inhibition by G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 94, 8866–8871 (1997).

    Article  CAS  Google Scholar 

  5. Kajikawa, Y., Saitoh, N. & Takahashi, T. GTP-binding protein βγ subunits mediate presynaptic calcium current inhibition by GABA(B) receptor. Proc. Natl. Acad. Sci. USA 98, 8054–8058 (2001).

    Article  CAS  Google Scholar 

  6. Hamm, H.E. The many faces of G protein signaling. J. Biol. Chem. 273, 669–672 (1998).

    Article  CAS  Google Scholar 

  7. Blackmer, T. et al. G protein βγ subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 292, 293–297 (2001).

    Article  CAS  Google Scholar 

  8. Takahashi, M., Freed, R., Blackmer, T. & Alford, S. Calcium influx-independent depression of transmitter release by 5-HT at lamprey spinal cord synapses. J. Physiol. (Lond.) 532, 323–336 (2001).

    Article  CAS  Google Scholar 

  9. Silinsky, E.M. & Solsona, C.S. Calcium currents at motor nerve endings: absence of effects of adenosine receptor agonists in the frog. J. Physiol. (Lond.) 457, 315–328 (1992).

    Article  CAS  Google Scholar 

  10. Jarvis, S.E., Magga, J.M., Beedle, A.M., Braun, J.E. & Zamponi, G.W. G protein modulation of N-type calcium channels is facilitated by physical interactions between syntaxin 1A and Gβγ. J. Biol. Chem. 275, 6388–6394 (2000).

    Article  CAS  Google Scholar 

  11. Blackmer, T. et al. G protein βγ directly regulates the SNARE protein fusion machinery for secretory granule exocytosis. Nat. Neurosci. 8, 421–425 (2005).

    Article  CAS  Google Scholar 

  12. Brodin, L., Buchanan, J.T., Hokfelt, T., Grillner, S. & Verhofstad, A.A. A spinal projection of 5-hydroxytryptamine neurons in the lamprey brainstem; evidence from combined retrograde tracing and immunohistochemistry. Neurosci. Lett. 67, 53–57 (1986).

    Article  CAS  Google Scholar 

  13. Brodin, L., Shupliakov, O. & Grillner, S.E. Central glutamatergic transmission. A view from the presynaptic axon. Adv. Second Messenger Phosphoprotein Res. 29, 205–221 (1994).

    Article  CAS  Google Scholar 

  14. Brodin, L. et al. Reticulospinal neurons in lamprey: transmitters, synaptic interactions and their role during locomotion. Arch. Ital. Biol. 126, 317–345 (1988).

    CAS  PubMed  Google Scholar 

  15. Gustafsson, J.S. et al. Ultrastructural organization of lamprey reticulospinal synapses in three dimensions. J. Comp. Neurol. 450, 167–182 (2002).

    Article  Google Scholar 

  16. Shupliakov, O., Pieribone, V.A., Gad, H. & Brodin, L. Synaptic vesicle depletion in reticulospinal axons is reduced by 5-hydroxytryptamine: direct evidence for presynaptic modulation of glutamatergic transmission. Eur. J. Neurosci. 7, 1111–1116 (1995).

    Article  CAS  Google Scholar 

  17. Neher, E. & Zucker, R.S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10, 21–30 (1993).

    Article  CAS  Google Scholar 

  18. Delaney, K.R. & Zucker, R.S. Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse. J. Physiol. (Lond.) 426, 473–498 (1990).

    Article  CAS  Google Scholar 

  19. Mulkey, R.M. & Zucker, R.S. Calcium released by photolysis of DM-nitrophen triggers transmitter release at the crayfish neuromuscular junction. J. Physiol. (Lond.) 462, 243–260 (1993).

    Article  CAS  Google Scholar 

  20. Niemann, H., Blasi, J. & Jahn, R. Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol. 4, 179–185 (1994).

    Article  CAS  Google Scholar 

  21. Montecucco, C. & Schiavo, G. Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 28, 423–472 (1995).

    Article  CAS  Google Scholar 

  22. Williamson, L.C., Halpern, J.L., Montecucco, C., Brown, J.E. & Neale, E.A. Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J. Biol. Chem. 271, 7694–7699 (1996).

    Article  CAS  Google Scholar 

  23. Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80, 717–766 (2000).

    Article  CAS  Google Scholar 

  24. Humeau, Y., Doussau, F., Grant, N.J. & Poulain, B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82, 427–446 (2000).

    Article  CAS  Google Scholar 

  25. Ahnert-Hilger, G. & Bigalke, H. Molecular aspects of tetanus and botulinum neurotoxin poisoning. Prog. Neurobiol. 46, 83–96 (1995).

    Article  CAS  Google Scholar 

  26. Banerjee, A., Kowalchyk, J.A., DasGupta, B.R. & Martin, T.F. SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis. J. Biol. Chem. 271, 20227–20230 (1996).

    Article  CAS  Google Scholar 

  27. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992).

    Article  CAS  Google Scholar 

  28. Hanson, M.A. & Stevens, R.C. Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 A resolution. Nat. Struct. Biol. 7, 687–692 (2000).

    Article  CAS  Google Scholar 

  29. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  Google Scholar 

  30. Pellegrini, L.L., O'Connor, V. & Betz, H. Fusion complex formation protects synaptobrevin against proteolysis by tetanus toxin light chain. FEBS Lett. 353, 319–323 (1994).

    Article  CAS  Google Scholar 

  31. Magga, J.M., Jarvis, S.E., Arnot, M.I., Zamponi, G.W. & Braun, J.E. Cysteine string protein regulates G protein modulation of N-type calcium channels. Neuron 28, 195–204 (2000).

    Article  CAS  Google Scholar 

  32. Schiavo, G. et al. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 335, 99–103 (1993).

    Article  CAS  Google Scholar 

  33. Binz, T. et al. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J. Biol. Chem. 269, 1617–1620 (1994).

    CAS  Google Scholar 

  34. Otto, H., Hanson, P.I., Chapman, E.R., Blasi, J. & Jahn, R. Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex. Biochem. Biophys. Res. Commun. 212, 945–952 (1995).

    Article  CAS  Google Scholar 

  35. Xu, T., Binz, T., Niemann, H. & Neher, E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat. Neurosci. 1, 192–200 (1998).

    Article  CAS  Google Scholar 

  36. Wei, S. et al. Exocytotic mechanism studied by truncated and zero layer mutants of the C-terminus of SNAP-25. EMBO J. 19, 1279–1289 (2000).

    Article  CAS  Google Scholar 

  37. Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  Google Scholar 

  38. Zhang, X., Kim-Miller, M.J., Fukuda, M., Kowalchyk, J.A. & Martin, T.F. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34, 599–611 (2002).

    Article  CAS  Google Scholar 

  39. Gerona, R.R., Larsen, E.C., Kowalchyk, J.A. & Martin, T.F. The C terminus of SNAP25 is essential for Ca2+-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328–6336 (2000).

    Article  CAS  Google Scholar 

  40. Pinxteren, J.A., O'Sullivan, A.J., Tatham, P.E. & Gomperts, B.D. Regulation of exocytosis from rat peritoneal mast cells by G protein βγ-subunits. EMBO J. 17, 6210–6218 (1998).

    Article  CAS  Google Scholar 

  41. Lang, J. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur. J. Biochem. 259, 3–17 (1999).

    Article  CAS  Google Scholar 

  42. Blasi, J. et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160–163 (1993).

    Article  CAS  Google Scholar 

  43. Bruns, D. et al. Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of Hirudo medicinalis. J. Neurosci. 17, 1898–1910 (1997).

    Article  CAS  Google Scholar 

  44. Schmidt, J.J. & Bostian, K.A. Endoproteinase activity of type A botulinum neurotoxin: substrate requirements and activation by serum albumin. J. Protein Chem. 16, 19–26 (1997).

    Article  CAS  Google Scholar 

  45. Fernandez-Chacon, R. et al. The synaptic vesicle protein CSP α prevents presynaptic degeneration. Neuron 42, 237–251 (2004).

    Article  CAS  Google Scholar 

  46. Schwartz, E.J., Gerachshenko, T. & Alford, S. 5-HT prolongs ventral root bursting via presynaptic inhibition of synaptic activity during fictive locomotion in lamprey. J. Neurophysiol. 93, 980–988 (2005).

    Article  CAS  Google Scholar 

  47. Ford, C.E. et al. Molecular basis for interactions of G protein βγ subunits with effectors. Science 280, 1271–1274 (1998).

    Article  CAS  Google Scholar 

  48. Blanes-Mira, C. et al. Identification of SNARE complex modulators that inhibit exocytosis from an α-helix-constrained combinatorial library. Biochem. J. 375, 159–166 (2003).

    Article  CAS  Google Scholar 

  49. Phillips, W.J. & Cerione, R.A. Labeling of the βγ subunit complex of transducin with an environmentally sensitive cysteine reagent. Use of fluorescence spectroscopy to monitor transducin subunit interactions. J. Biol. Chem. 266, 11017–11024 (1991).

    CAS  PubMed  Google Scholar 

  50. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank T.F.J. Martin, J. Richmond, E. Schwartz, H. Photowala, R. Smetana and S. Ramakrishna for critical reading of the manuscript and/or discussions. Thanks to C. Malizio (Metabiologics, Inc.) for special preparation of BoNT A. The work was supported by grants from the National Institutes of Neurological Disorders and Stroke, The National Institute of Mental Health and the National Science Foundation to S.A. and the National Eye Institute to H.E.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heidi E Hamm or Simon Alford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Model of 5-HT GPCR signaling depicts presynaptic and postsynaptic sites of the lamprey giant synapse. The 5-HT receptor signals through free Gβγ. Gβγ can access assembled SNARE complexes to inhibit synaptic transmission. Presynaptically applied BoNT/A and ct-SNAP-25 block this inhibition suggesting that Gβγ acts at the C-terminus of SNAP-25. (PDF 778 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerachshenko, T., Blackmer, T., Yoon, EJ. et al. Gβγ acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. Nat Neurosci 8, 597–605 (2005). https://doi.org/10.1038/nn1439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing