Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technologies for imaging neural activity in large volumes

Abstract

Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Conventional microscopy collects data from individual planes and cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point-spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for processing and analyzing volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics and helping elucidate how brain regions work in concert to support behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical access and basic optical layout of two-photon laser scanning microscopy.
Figure 2: Scan engine and objective determine imaging FOV.
Figure 3: 2D and 3D scanning strategies.
Figure 4: Sampling strategies.
Figure 5: Aberration and scattering limit imaging depth.

Similar content being viewed by others

References

  1. Meltzer, S.J. Emil Du Bois-Reymond. Science 5, 217–219 (1897).

    Article  CAS  PubMed  Google Scholar 

  2. Rothschild, R.M. Neuroengineering tools/applications for bidirectional interfaces, brain-computer interfaces, and neuroprosthetic implants—a review of recent progress. Front. Neuroeng. 3, 112 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smith, S.L., Judy, J.W. & Otis, T.S. An ultra small array of electrodes for stimulating multiple inputs into a single neuron. J. Neurosci. Methods 133, 109–114 (2004).

    Article  PubMed  Google Scholar 

  4. Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H. & Buzsáki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Nicolelis, M.A.L. & Ribeiro, S. Multielectrode recordings: the next steps. Curr. Opin. Neurobiol. 12, 602–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Henze, D.A. et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84, 390–400 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Hendel, T. et al. Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J. Neurosci. 28, 7399–7411 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Huber, D. et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484, 473–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Denk, W. et al. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci. Methods 54, 151–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Denk, W. & Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hill, D.N., Varga, Z., Jia, H., Sakmann, B. & Konnerth, A. Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo. Proc. Natl. Acad. Sci. USA 110, 13618–13623 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, Q., Gao, E. & Burkhalter, A. Gateways of ventral and dorsal streams in mouse visual cortex. J. Neurosci. 31, 1905–1918 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marshel, J.H., Garrett, M.E., Nauhaus, I. & Callaway, E.M. Functional specialization of seven mouse visual cortical areas. Neuron 72, 1040–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andermann, M.L., Kerlin, A.M., Roumis, D.K., Glickfeld, L.L. & Reid, R.C. Functional specialization of mouse higher visual cortical areas. Neuron 72, 1025–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Q., Sporns, O. & Burkhalter, A. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32, 4386–4399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glickfeld, L.L., Andermann, M.L., Bonin, V. & Reid, R.C. Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat. Neurosci. 16, 219–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Pillow, J.W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Averbeck, B.B., Latham, P.E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    CAS  PubMed  Google Scholar 

  27. Yang, G., Pan, F., Parkhurst, C.N., Grutzendler, J. & Gan, W.-B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc. 5, 201–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drew, P.J. et al. Chronic optical access through a polished and reinforced thinned skull. Nat. Methods 7, 981–984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barretto, R.P.J. et al. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 17, 223–228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bocarsly, M.E. et al. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express 6, 4546–4556 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chia, T.H. & Levene, M.J. Microprisms for in vivo multilayer cortical imaging. J. Neurophysiol. 102, 1310–1314 (2009).

    Article  PubMed  Google Scholar 

  33. Andermann, M.L. et al. Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80, 900–913 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Jung, J.C., Mehta, A.D., Aksay, E., Stepnoski, R. & Schnitzer, M.J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    Article  PubMed  Google Scholar 

  35. Levene, M.J., Dombeck, D.A., Kasischke, K.A., Molloy, R.P. & Webb, W.W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    Article  PubMed  Google Scholar 

  36. Horton, N., Wang, K., Kobat, D., Wise, F.W. & Xu, C. In vivo deep penetration three-photon imaging of mouse brain through an unthinned, intact skull. in Optics in the Life Sciences NT3B.3 (Optical Society of America, 2013).

  37. Theer, P., Hasan, M.T. & Denk, W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Ji, N. The practical and fundamental limits of optical imaging in mammalian brains. Neuron 83, 1242–1245 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Horton, N.G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205–209 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  40. Stirman, J.N., Smith, I.T., Kudenov, M.W. & Smith, S.L. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotech. http://dx.doi.org/10.1038/nbt.3594 (2016).

  41. Tsai, P.S. et al. Ultra-large field-of-view two-photon microscopy. Opt. Express 23, 13833–13847 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sofroniew, N.J., Flickinger, D., King, J. & Svoboda, K. A large field-of-view two-photon microscope with subcellular resolution for in vivo imaging. Preprint at bioRxiv http://dx.doi.org/10.1101/055947 (2016).

  43. Zheng, G., Ou, X., Horstmeyer, R. & Yang, C. Characterization of spatially varying aberrations for wide field-of-view microscopy. Opt. Express 21, 15131–15143 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Negrean, A. & Mansvelder, H.D. Optimal lens design and use in laser-scanning microscopy. Biomed. Opt. Express 5, 1588–1609 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Voigt, F.F., Chen, J.L., Krueppel, R. & Helmchen, F. A modular two-photon microscope for simultaneous imaging of distant cortical areas in vivo. in Proc. SPIE 9329, Multiphoton Microscopy in the Biomedical Sciences XV, 93292C, http://dx.doi.org/10.1117/12.2076388 (2015).

  46. Chen, J.L., Voigt, F.F., Javadzadeh, M., Krueppel, R. & Helmchen, F. Long-range population dynamics of anatomically defined neocortical networks. Elife 5, e14679 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Katona, G. et al. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9, 201–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Heys, J.G., Rangarajan, K.V. & Dombeck, D.A. The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron 84, 1079–1090 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Low, R.J., Gu, Y. & Tank, D.W. Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex. Proc. Natl. Acad. Sci. USA 111, 18739–18744 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fan, G.Y. et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J. 76, 2412–2420 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Varga, Z., Jia, H., Sakmann, B. & Konnerth, A. Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proc. Natl. Acad. Sci. USA 108, 15420–15425 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bullen, A., Patel, S.S. & Saggau, P. High-speed, random-access fluorescence microscopy: I. high-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J. 73, 477–491 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iyer, V., Losavio, B.E. & Saggau, P. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J. Biomed. Opt. 8, 460–471 (2003).

    Article  PubMed  Google Scholar 

  54. Roorda, R.D., Hohl, T.M., Toledo-Crow, R. & Miesenböck, G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J. Neurophysiol. 92, 609–621 (2004).

    Article  PubMed  Google Scholar 

  55. Lechleiter, J.D., Lin, D.-T. & Sieneart, I. Multi-photon laser scanning microscopy using an acoustic optical deflector. Biophys. J. 83, 2292–2299 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, X., Leischner, U., Rochefort, N.L., Nelken, I. & Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Iyer, V., Hoogland, T.M. & Saggau, P. Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. J. Neurophysiol. 95, 535–545 (2006).

    Article  PubMed  Google Scholar 

  58. Otsu, Y. et al. Optical monitoring of neuronal activity at high frame rate with a digital random-access multiphoton (RAMP) microscope. J. Neurosci. Methods 173, 259–270 (2008).

    Article  PubMed  Google Scholar 

  59. Grewe, B.F., Langer, D., Kasper, H., Kampa, B.M. & Helmchen, F. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7, 399–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Hammond, A.T. & Glick, B.S. Raising the speed limits for 4D fluorescence microscopy. Traffic 1, 935–940 (2000).

    CAS  PubMed  Google Scholar 

  61. Callamaras, N. & Parker, I. Construction of a confocal microscope for real-time x-y and x-z imaging. Cell Calcium 26, 271–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Andermann, M.L., Kerlin, A.M. & Reid, R.C. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front. Cell. Neurosci. 4, 3 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Kerlin, A.M., Andermann, M.L., Berezovskii, V.K. & Reid, R.C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peron, S.P., Freeman, J., Iyer, V., Guo, C. & Svoboda, K. A cellular resolution map of barrel cortex activity during tactile behavior. Neuron 86, 783–799 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Sofroniew, N.J., Vlasov, Y.A., Andrew Hires, S., Freeman, J. & Svoboda, K. Neural coding in barrel cortex during whisker-guided locomotion. Elife 4, e12559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seelig, J.D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Göbel, W., Kampa, B.M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4, 73–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Katona, G. et al. Roller coaster scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons. Proc. Natl. Acad. Sci. USA 108, 2148–2153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dal Maschio, M., De Stasi, A.M., Benfenati, F. & Fellin, T. Three-dimensional in vivo scanning microscopy with inertia-free focus control. Opt. Lett. 36, 3503–3505 (2011).

    Article  PubMed  Google Scholar 

  71. Amir, W. et al. Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt. Lett. 32, 1731–1733 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Moghimi, M.J., Chattergoon, K.N., Wilson, C.R. & Dickensheets, D.L. High speed focus control MEMS mirror with controlled air damping for vital microscopy. J. Microelectromech. Syst. 22, 938–948 (2013).

    Article  Google Scholar 

  73. Blum, M., Büeler, M., Grätzel, C. & Aschwanden, M. Compact optical design solutions using focus tunable lenses. in Proc. SPIE 8167, Optical Design and Engineering IV, 81670W. http://dx.doi.org/10.1117/12.897608 (2011).

  74. Mermillod-Blondin, A., McLeod, E. & Arnold, C.B. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Opt. Lett. 33, 2146–2148 (2008).

    Article  PubMed  Google Scholar 

  75. Grewe, B.F., Voigt, F.F., van 't Hoff, M. & Helmchen, F. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2, 2035–2046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sheffield, M.E.J. & Dombeck, D.A. Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517, 200–204 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Kong, L. et al. Continuous volumetric imaging via an optical phase-locked ultrasound lens. Nat. Methods 12, 759–762 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reddy, G.D. & Saggau, P. Fast three-dimensional laser scanning scheme using acousto-optic deflectors. J. Biomed. Opt. 10, 064038 (2005).

    Article  PubMed  Google Scholar 

  79. Kaplan, A., Friedman, N. & Davidson, N. Acousto-optic lens with very fast focus scanning. Opt. Lett. 26, 1078–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Duemani Reddy, G., Kelleher, K., Fink, R. & Saggau, P. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat. Neurosci. 11, 713–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Kirkby, P.A., Srinivas Nadella, K.M.N. & Silver, R.A. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt. Express 18, 13721–13745 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Froudarakis, E. et al. Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nat. Neurosci. 17, 851–857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sheppard, C.J.R. & Gu, M. Aberration compensation in confocal microscopy. Appl. Opt. 30, 3563–3568 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Konstantinou, G. et al. Dynamic wavefront shaping with an acousto-optic lens for laser scanning microscopy. Opt. Express 24, 6283–6299 (2016).

    Article  PubMed  Google Scholar 

  85. Akemann, W. et al. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy. Opt. Express 23, 28191–28205 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Botcherby, E.J., Juskaitis, R., Booth, M.J. & Wilson, T. Aberration-free optical refocusing in high numerical aperture microscopy. Opt. Lett. 32, 2007–2009 (2007).

    Article  PubMed  Google Scholar 

  87. Botcherby, E.J., Juškaitis, R., Booth, M.J. & Wilson, T. An optical technique for remote focusing in microscopy. Opt. Commun. 281, 880–887 (2008).

    Article  CAS  Google Scholar 

  88. Botcherby, E.J. et al. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proc. Natl. Acad. Sci. USA 109, 2919–2924 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Smith, C.W., Botcherby, E.J., Booth, M.J., Juškaitis, R. & Wilson, T. Agitation-free multiphoton microscopy of oblique planes. Opt. Lett. 36, 663–665 (2011).

    Article  PubMed  Google Scholar 

  90. Colon, J. & Lim, H. Shaping field for 3D laser scanning microscopy. Opt. Lett. 40, 3300–3303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rupprecht, P., Prendergast, A., Wyart, C. & Friedrich, R.W. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy. Biomed. Opt. Express 7, 1656–1671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bewersdorf, J., Pick, R. & Hell, S.W. Multifocal multiphoton microscopy. Opt. Lett. 23, 655–657 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Buist, A.H., Müller, M., Squier, J. & Brakenhoff, G.J. Real time two-photon absorption microscopy using multi point excitation. J. Microsc. 192, 217–226 (1998).

    Article  CAS  Google Scholar 

  94. Watson, B.O., Nikolenko, V. & Yuste, R. Two-photon imaging with diffractive optical elements. Front. Neural Circuits 3, 6 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Kim, K.H. et al. Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Opt. Express 15, 11658–11678 (2007).

    Article  PubMed  Google Scholar 

  96. Cheng, A., Gonçalves, J.T., Golshani, P., Arisaka, K. & Portera-Cailliau, C. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 8, 139–142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sheetz, K.E., Hoover, E.E., Carriles, R., Kleinfeld, D. & Squier, J.A. Advancing multifocal nonlinear microscopy: development and application of a novel multibeam Yb:KGd(WO4)2 oscillator. Opt. Express 16, 17574–17584 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. Elife 5, e12727 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang, W. et al. Simultaneous multi-plane imaging of neural circuits. Neuron 89, 269–284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mukamel, E.A., Nimmerjahn, A. & Schnitzer, M.J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maruyama, R. et al. Detecting cells using non-negative matrix factorization on calcium imaging data. Neural Netw. 55, 11–19 (2014).

    Article  PubMed  Google Scholar 

  102. Pnevmatikakis, E.A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Welford, W.T. Use of annular apertures to increase focal depth. J. Opt. Soc. Am. 50, 749–753 (1960).

    Article  Google Scholar 

  104. Botcherby, E.J., Juškaitis, R. & Wilson, T. Scanning two photon fluorescence microscopy with extended depth of field. Opt. Commun. 268, 253–260 (2006).

    Article  CAS  Google Scholar 

  105. Thériault, G., De Koninck, Y. & McCarthy, N. Extended depth of field microscopy for rapid volumetric two-photon imaging. Opt. Express 21, 10095–10104 (2013).

    Article  PubMed  Google Scholar 

  106. Thériault, G., Cottet, M., Castonguay, A., McCarthy, N. & De Koninck, Y. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging. Front. Cell. Neurosci. 8, 139 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Lu, R. et al. Video-rate volumetric imaging of brains with synaptic resolution. Preprint at bioRxiv http://dx.doi.org/10.1101/058495 (2016).

  108. Wilt, B.A., Fitzgerald, J.E. & Schnitzer, M.J. Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing. Biophys. J. 104, 51–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cotton, R.J., Froudarakis, E., Storer, P., Saggau, P. & Tolias, A.S. Three-dimensional mapping of microcircuit correlation structure. Front. Neural Circuits 7, 151 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Engelbrecht, C.J., Göbel, W. & Helmchen, F. Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection. Opt. Express 17, 6421–6435 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. McMullen, J.D., Kwan, A.C., Williams, R.M. & Zipfel, W.R. Enhancing collection efficiency in large field of view multiphoton microscopy. J. Microsc. 241, 119–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nguyen, Q.T., Callamaras, N., Hsieh, C. & Parker, I. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium 30, 383–393 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Bonin, V., Histed, M.H., Yurgenson, S. & Reid, R.C. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31, 18506–18521 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nikolenko, V., Poskanzer, K.E. & Yuste, R. Two-photon photostimulation and imaging of neural circuits. Nat. Methods 4, 943–950 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Lillis, K.P., Eng, A., White, J.A. & Mertz, J. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution. J. Neurosci. Methods 172, 178–184 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Valmianski, I. et al. Automatic identification of fluorescently labeled brain cells for rapid functional imaging. J. Neurophysiol. 104, 1803–1811 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lörincz, A., Rózsa, B., Katona, G., Vizi, E.S. & Tamás, G. Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal cells. Proc. Natl. Acad. Sci. USA 104, 1033–1038 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sadovsky, A.J. et al. Heuristically optimal path scanning for high-speed multiphoton circuit imaging. J. Neurophysiol. 106, 1591–1598 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chen, J.L., Pfäffli, O.A., Voigt, F.F., Margolis, D.J. & Helmchen, F. Online correction of licking-induced brain motion during two-photon imaging with a tunable lens. J. Physiol. (Lond.) 591, 4689–4698 (2013).

    Article  CAS  Google Scholar 

  121. Ji, N., Milkie, D.E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Tao, X. et al. Adaptive optics confocal microscopy using direct wavefront sensing. Opt. Lett. 36, 1062–1064 (2011).

    Article  PubMed  Google Scholar 

  123. Ji, N., Sato, T.R. & Betzig, E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl. Acad. Sci. USA 109, 22–27 (2012).

    Article  PubMed  Google Scholar 

  124. Wang, C. et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat. Methods 11, 1037–1040 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, K. et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods 11, 625–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, K. et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 6, 7276 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Sun, W., Tan, Z., Mensh, B.D. & Ji, N. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 308–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, K., Horton, N.G., Charan, K. & Xu, C. Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics. IEEE J. Sel. Top. Quantum Electron. 20, 50–60 (2014).

    Article  CAS  Google Scholar 

  129. Kobat, D. et al. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354–13364 (2009).

    Article  PubMed  Google Scholar 

  130. Tischbirek, C., Birkner, A., Jia, H., Sakmann, B. & Konnerth, A. Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator. Proc. Natl. Acad. Sci. USA 112, 11377–11382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Podgorski, K. & Ranganathan, G.N. Brain heating induced by near infrared lasers during multi-photon microscopy. J. Neurophysiol. http://dx.doi.org/10.1152/jn.00275.2016 (2016).

  132. Clack, N.G. et al. Automated tracking of whiskers in videos of head fixed rodents. PLOS Comput. Biol. 8, e1002591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Harris, K.D., Quian Quiroga, R., Freeman, J. & Smith, S.L. Improving data quality in neuronal population recordings. Nat. Neurosci. 19, 350–355 (2016).

    Article  CAS  Google Scholar 

  134. Ahrens, M.B., Paninski, L. & Sahani, M. Inferring input nonlinearities in neural encoding models. Network 19, 35–67 (2008).

    Article  PubMed  Google Scholar 

  135. Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 11, 941–950 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11, 951–958 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Latimer, K.W., Yates, J.L., Meister, M.L.R., Huk, A.C. & Pillow, J.W. Neuronal modeling. Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science 349, 184–187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Grosenick, L., Marshel, J.H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Freeman, J. et al. Mapping nonlinear receptive field structure in primate retina at single cone resolution. Elife 4, e05241 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yatsenko, D. et al. Improved estimation and interpretation of correlations in neural circuits. PLOS Comput. Biol. 11, e1004083 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marblestone, A.H. et al. Physical principles for scalable neural recording. Front. Comput. Neurosci. 7, 137 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Marvin, J.S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Judkewitz, B., Wang, Y.M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE). Nat. Photonics 7, 300–305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Kuhl and A. Chen for help with illustrations, C. Xu for providing the high-resolution version of Figure 5c and N. Sofroniew for providing comments. N.J. and J.F. are supported by Howard Hughes Medical Institute. S.L.S. is supported by grants from the Human Frontier Science Program (CDA00063/2012 and RGP0027/2016), the National Science Foundation (1450824), the Whitehall Foundation, the Klingenstein Foundation, the McKnight Foundation, the Simons Foundation (SCGB 325407SS) and the National Institutes of Health (R01NS091335 and R01EY024294).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Ji, Jeremy Freeman or Spencer L Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, N., Freeman, J. & Smith, S. Technologies for imaging neural activity in large volumes. Nat Neurosci 19, 1154–1164 (2016). https://doi.org/10.1038/nn.4358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4358

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing