Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Latent tri-lineage potential of adult hippocampal neural stem cells revealed by Nf1 inactivation

Abstract

Endogenous neural stem cells (NSCs) in the adult hippocampus are considered to be bi-potent, as they only produce neurons and astrocytes in vivo. In mouse, we found that inactivation of neurofibromin 1 (Nf1), a gene mutated in neurofibromatosis type 1, unlocked a latent oligodendrocyte lineage potential to produce all three lineages from NSCs in vivo. Our results suggest an avenue for promoting stem cell plasticity by targeting barriers of latent lineage potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NestinCreERT2-based conditional Nf1 inactivation in adult hippocampal neural progenitors leads to generation of oligodendrocyte progenitor cells.
Figure 2: Clonal lineage-tracing of RGLs following conditional Nf1 inactivation reveals RGLs as OPC cell of origin.

Similar content being viewed by others

References

  1. Gage, F.H. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  2. Ming, G.L. & Song, H. Neuron 70, 687–702 (2011).

    Article  CAS  Google Scholar 

  3. Menn, B. et al. J. Neurosci. 26, 7907–7918 (2006).

    Article  CAS  Google Scholar 

  4. Calzolari, F. et al. Nat. Neurosci. 18, 490–492 (2015).

    Article  CAS  Google Scholar 

  5. Ortega, F. et al. Nat. Cell Biol. 15, 602–613 (2013).

    Article  CAS  Google Scholar 

  6. Gutmann, D.H., Parada, L.F., Silva, A.J. & Ratner, N. J. Neurosci. 32, 14087–14093 (2012).

    Article  CAS  Google Scholar 

  7. Li, Y., Li, Y., McKay, R.M., Riethmacher, D. & Parada, L.F. J. Neurosci. 32, 3529–3539 (2012).

    Article  CAS  Google Scholar 

  8. Lagace, D.C. et al. J. Neurosci. 27, 12623–12629 (2007).

    Article  CAS  Google Scholar 

  9. Dranovsky, A. et al. Neuron 70, 908–923 (2011).

    Article  CAS  Google Scholar 

  10. Bonaguidi, M.A. et al. Cell 145, 1142–1155 (2011).

    Article  CAS  Google Scholar 

  11. Song, J. et al. Nature 489, 150–154 (2012).

    Article  CAS  Google Scholar 

  12. Jang, M.H. et al. Cell Stem Cell 12, 215–223 (2013).

    Article  CAS  Google Scholar 

  13. Wang, Y. et al. Cell 150, 816–830 (2012).

    Article  CAS  Google Scholar 

  14. Liu, C. et al. Cell 146, 209–221 (2011).

    Article  CAS  Google Scholar 

  15. Chetty, S. et al. Mol. Psychiatry 19, 1275–1283 (2014).

    Article  CAS  Google Scholar 

  16. Ahn, S. & Joyner, A.L. Nature 437, 894–897 (2005).

    Article  CAS  Google Scholar 

  17. Kriegstein, A. & Alvarez-Buylla, A. Annu. Rev. Neurosci. 32, 149–184 (2009).

    Article  CAS  Google Scholar 

  18. Jessberger, S., Toni, N., Clemenson, G.D. Jr., Ray, J. & Gage, F.H. Nat. Neurosci. 11, 888–893 (2008).

    Article  CAS  Google Scholar 

  19. Magnusson, J.P. et al. Science 346, 237–241 (2014).

    Article  CAS  Google Scholar 

  20. Nato, G. et al. Development 142, 840–845 (2015).

    Article  CAS  Google Scholar 

  21. Balordi, F. & Fishell, G. J. Neurosci. 27, 14248–14259 (2007).

    Article  CAS  Google Scholar 

  22. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C.G. Genesis 28, 147–155 (2000).

    Article  CAS  Google Scholar 

  23. Zhu, Y. et al. Genes Dev. 15, 859–876 (2001).

    Article  CAS  Google Scholar 

  24. Berg, D.A. et al. Front. Biol. 10, 262–271 (2015).

    Article  CAS  Google Scholar 

  25. Sun, G.J. et al. Proc. Natl. Acad. Sci. USA 112, 9484–9489 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Ming and Song laboratories for discussion, and Y. Cai and L. Liu for technical support. This work was supported by the US National Institutes of Health (NS047344 to H.S., NS080913 to M.A.B., and NS048271 and MH105128 to G.M.), and by a pre-doctoral fellowship from The Children's Tumor Foundation to G.J.S.

Author information

Authors and Affiliations

Authors

Contributions

G.J.S., H.S. and G.M. designed the project. G.J.S. contributed to all aspects of the study. Y. Zhou, S.I., G.S.-O'B., N.K.K. and N.M. performed the experiments. M.A.B. provided some initial data. Y. Zhu contributed reagents. G.J.S., H.S. and G.M. wrote the manuscript.

Corresponding authors

Correspondence to Guo-li Ming or Hongjun Song.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Inducible recombination and cell targeting of Nf1 inactivation in NSCs at the population level using Nestin-CreERT2 mice.

(a) Genetic recombination model for conditional inactivation of Nf1 in the adult mouse brain. (b) Injection timeline and paradigm for population analysis using NestinCreERT2-based cell targeting. (c) Sample confocal image of GFP+ cells in Nf1Nestin animal at 1 mpi. Arrowheads point to GFP+MCM2+NG2+ OPCs. (d) Sample confocal image of an ectopically Olig2-expressing RGL in Nf1Nestin animal at 14 dpi. Scale bars: 10 μm.

Supplementary Figure 2 Inducible recombination and cell targeting of Nf1 inactivation in NSCs at the clonal level using Nestin-CreERT2 mice.

(a) Injection timeline and paradigm for clonal analysis using NestinCreERT2-based cell targeting. (b) Cumulative distribution plot of cell number of GFP+ clones for those containing OPCs in Nf1Nestin animals (solid circle) and those in controlNestin animals (open circle) at 1 mpi. Each symbol represents data from one clone. *p < 0.01, two-sample Kolmogorov–Smirnov test. (c) Clone at 1 mpi in Nf1Nestin animal with Prox1+ newborn dentate granule neurons (N1, N2) ectopically migrated into the molecular layer (ML) of the dentate gyrus. ML, molecular layer; GCL, granule cell layer; SGZ, subgranular zone. Scale bar: 10 μm.

Supplementary Figure 3 Clonal lineage tracing of RGLs upon conditional Nf1 inactivation using Gli1CreERT2-based cell targeting.

(a) Injection timeline and paradigm for clonal analysis using Gli1CreERT2-based cell targeting for adult mice. (b) A tri-lineage clone at 1 mpi in Nf1Gli1 animal with lost or differentiated RGL, astrocytes (open arrowheads), OPCs (closed arrowheads), and mature newborn neurons. Right: high magnification confocal image of boxed region denoting NG2+ OPC. Scale bars: 50 μm and 10 μm (right). (c) A clone at 1 mpi in controlGli1 animal with a maintained RGL (boxed) and mature newborn neurons. Right: maintained nestin+ RGL. Scale bar: 10 μm. See Supplementary Table 3 for number of hemispheres examined under different conditions.

Supplementary Figure 4 Models of adult NSC fate regulation.

Under normal conditions, endogenous RGLs in the adult mouse dentate gyrus are bi-potent and generate only neurons and astrocytes in vivo. NF1 suppresses the oligodendrocytic lineage potential, which can be revealed by removal of NF1.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–4 (PDF 953 kb)

Supplementary Methods Checklist (PDF 350 kb)

3D rendering and fly-through of reconstructed 2 mpi Nf1Nestin clone shown in Figure 2a.

Four representative OPCs are labeled in addition to the mother RGL. OPC, oligodendrocyte progenitor cell; RGL, radial glia-like cell (MOV 11862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Zhou, Y., Ito, S. et al. Latent tri-lineage potential of adult hippocampal neural stem cells revealed by Nf1 inactivation. Nat Neurosci 18, 1722–1724 (2015). https://doi.org/10.1038/nn.4159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4159

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing